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Background

The thesis is a contribution to category theory:
2-category theory,
2-dimensional monad theory,
codescent objects.

The goal was to prove lax analogues of results on pseudo structures.
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Background

2-categories

2-categories & double categories:

a b

a b

c d

g

u v

f

g

h

αα

Sets with additional structure (posets, groups, vector spaces) form
categories.

Categories with additional structure (monoidal categories,
cocomplete categories) form 2-categories.
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Background

2-monads

A monad (T , µ, η) on Set consists of:
a functor T : Set→ Set,
a natural transformations µ : T2 ⇒ T ,
a natural transformations η : 1⇒ T ,

satisfying the following identities:

T3 T2 T T2 T

T2 T T

Tµ

µT µ

ηT

µ

Tη

µ
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Background

2-monads

A 2-monad (T , µ, η) on Cat consists of:
a 2-functor T : Cat→ Cat,
a 2-natural transformations µ : T2 ⇒ T ,
a 2-natural transformations η : 1⇒ T ,

satisfying the following identities:

T3 T2 T T2 T

T2 T T

Tµ

µT µ

ηT

µ

Tη

µ
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Background

Important 2-monads

2-monads of form Cat(T):
well-behaved class of 2-monads built out of ordinary monads
Example: T free monoid monad⇝ Cat(T) free (strict) monoidal
category 2-monad

lax-idempotent 2-monads:
introduced in [Koc95], [Zöb76],
they satisfy µ ⊣ ηT ,
Example: free cocompletion 2-monads.
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Background

Levels of strictness
Algebras for 2-monads admit three levels of strictness.

Level Associativity Example
strict (a ∗ b) ∗ c = a ∗ (b ∗ c) a group G
pseudo (A× B)× C ∼= A× (B× C) sets

(U ⊗R V)⊗R W ∼= U ⊗R (V ⊗R W) vector spaces
lax (A⊗ B)⊗ C → A⊗ (B⊗ C) set difference
colax (A⊗ B)⊗ C ← A⊗ (B⊗ C)

For a 2-monad T , the categories of algebras will be denoted by:

T-Alg Ps-T-Alg Lax-T-Alg Colax-T-Alg

Morphisms of algebras can also be strict, pseudo, (co)lax – we use
the lower index for this, e.g.:

Colax-T-Algps .

In the literature, there is often a preference for pseudo over lax.
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Results

Results
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Results Question 1

Question 1 - making colax sturctures strict

Theorem, [Lac02]
Let T be a 2-monad on a 2-category.

The inclusion below has a left adjoint if and only if T-Algstrict
admits codescent objects.

T-Algstrict Ps-T-Algps

(−)′

⊣
If T preserves them, each A ∈ Ps-T-Algps is canonically
equivalent to A′.

Implies coherence for monoidal categories, bicategories,
pseudofunctors. In [Lac14] and [Ště20], a version involving
Colax-T-Alglax instead of Ps-T-Algps has been proven.
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Results Question 1

Question 1 - making colax sturctures strict

Theorem, [Lac02]
Let T be a 2-monad on a 2-category.

The inclusion below has a left adjoint if and only if T-Algstrict
admits codescent objects.

T-Algstrict Ps-T-Algps

(−)′

⊣
If T preserves them, each A ∈ Ps-T-Algps is canonically
equivalent to A′.

Question 1: What are the examples of the colax version?
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Results Question 1

Answer

Theorem 4.4.3
Let T ′ be a cartesian monad on a category E with pullbacks.
Consider T := Cat(T ′) on Cat(E).

The inclusion of strict algebras to colax ones admits a left
adjoint:

T-Algstrict Colax-T-Alglax

(−)†

⊣

Each A ∈ Colax-T-Alglax is related to A† via a canonical
adjunction.
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Results Question 1

Answer – remarks

Applies for instance to (unbiased) colax monoidal categories or
colax functors.
Done by studying and generalizing constructions from [Web15].
A double category-like structure has been introduced – a
codomain-colax category.
Note – no colimit assumptions on E or Cat(E).
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Results Question 1

By-product: a result on factorization systems

Theorem 3.3.33
Any category C with two classes of morphisms (E ,M) can be
assigned a double category DE,M.
Any double category X can be assigned a category Cnr(X) with
two classes of morphisms (EX ,MX).

These establish an equivalence between orthogonal factorization
systems and certain double categories:

OFS FactDbl
D

Cnr(−)

≃

Analogous results hold for strict and weak factorization systems
(Theorem 3.3.7, Corollary 4.2.17).
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Results Question 1

By-product: a result on factorization systems

Theorem 3.3.33
Any category C with two classes of morphisms (E ,M) can be
assigned a double category DE,M.
Any double category X can be assigned a category Cnr(X) with
two classes of morphisms (EX ,MX).

These establish an equivalence between orthogonal factorization
systems and certain double categories:

OFS FactDbl
D

Cnr(−)

≃

The philosophy: A structure on a 1-dimensional object is replaced by
a property of a 2-dimensional object.
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Results Question 2

Question 2 – colimits for lax morphisms

Limits in T-Alglax understood – see [Lac05], [LS12].
Colimits, not so much. For pseudo morphisms, we have:

Theorem [BKP89, 5.1, 5.8]
Let T be a 2-monad on a 2-category. Assuming (. . . ), we have:

Any 2-adjunction as below induces a biadjunction:

T-Algstrict T-Algps L ⇝ T-Algps L
J G

H

G

JH
⊥

⊥

If T-Algstrict is 2-cocomplete, T-Algps is bicocomplete.

Question 2: What is the version involving lax instead of pseudo?
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Results Question 2

Question 2 – observations

Need to replace biadjunctions by something weaker – colax
adjunctions of [Gra74].
Need to replace bicolimits by something weaker – a special case
of enriched weak colimits of [LR12] (V = Cat, E := {reflectors}).
Introduced in [Gra74], one example appears in [Mil03].
The theorem in [BKP89] is a corollary of a very formal result.
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Results Question 2

Question 2 – intermediate result

‘Big Colax Adjunction Theorem’ 5.3.15, 25
Let D be a lax-idempotent 2-monad on a 2-category K.

Any 2-adjunction as below induces a colax adjunction:

K KD L ⇝ KD L
J G

H

G

JH
⊤ ⊣⊣

If K is 2-complete, KD is weakly complete.

Done by exploiting the left Kan pseudomonad presentation [MW12].
Also needed to generalize [Bun74] from 2-functors to pseudofunctors.
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Results Question 2

Question 2 – intermediate result

‘Big Colax Adjunction Theorem’ 5.3.15, 25
Let D be a lax-idempotent 2-monad on a 2-category K.

Any 2-adjunction as below induces a colax adjunction:

K KD L ⇝ KD L
J G

H

G

JH
⊤ ⊣⊣

If K is 2-complete, KD is weakly complete.

Application: new results on the bicategory Prof .
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Results Question 2

Question 2 – answer

Theorem 5.4.9, 11
Let T be a 2-monad on a 2-category. Assuming (. . . ), we have:

Any 2-adjunction as below induces a colax adjunction:

T-Algstrict T-Alglax L ⇝ T-Alglax L
J G

H

G

JH
⊥ ⊣⊣

If T-Algstrict is 2-cocomplete, T-Alglax is weakly cocomplete.

Examples
Monoidal categories & lax monoidal functors.
Categories with J-colimits & all functors between them.
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Results Other results

Other results
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Results Other results

“Lax-idempotentiation process”
Fakir [Fak70] described a process that turns a monad on a category
into an idempotent one. He gives a right adjoint to the inclusion:

Idempotent(C) Monad(C)

Given a monad T on C, using equalizers we may construct a
transfinite sequence of monads and monomorphisms:

T T+ T++ . . .

Chapter 6 provides the first steps towards generalizing this to
lax-idempotent 2-monads on 2-categories:

Proposition 6.1.14: T is lax-idempotent if and only if T = T+.
Theorem 6.1.13: if T preserves descent objects, T+ is
lax-idempotent.
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Results Other results

Application to lax morphisms
Let T be a 2-monad on K. Assuming (. . . ), we have:

T-Algstrict K T-Algstrict T-Alglax

UT

FT (−)†

⊣ ⊣

They generate comonads FTUT and Ql on T-Algstrict.

Theorem 6.1.15
The comonad Ql is the reflection of FTUT along the inclusion:

Lax-idempotent(T-Algstrict) 2-Comonad(T-Algstrict)

Note: observed by Richard Garner [Gar18].
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Results Other results

The relationship with multicategories

Let T̃ be a cartesian monad on a category E with pullbacks.
Consider T := Cat(T̃) on Cat(E). We have an adjunction that
generates the comonad Ql on T-Algstrict:

T-Algstrict T-Alglax

(−)†

⊣
Theorem 6.2.5

Ql-coalgebras are equivalently T̃-multicategories.

A special case appeared in [DPP06, Theorem 2.13].
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Future work

Ongoing and future work
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Future work

Ongoing and future work

Prove the general version of the 2-dimensional analogue of
[Fak70].
Study the replacement of structure by property – [Her00],
[Her01], [CS10] – give a clear 2-categorical proof.
New characterizations of lax-idempotency for 2-monads.
Generalize more results from ‘formal theory of monads’ to (co)lax
algebras of a 2-monad T .
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Publications and talks

Publications and talks
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Publications and talks

Publications

"Factorization systems and double categories." Theory And
Applications Of Categories 41.18 (2024): 551-592.
"Colax adjunctions and lax-idempotent pseudomonads." Theory
and Applications of Categories, 44.7 (2025): 227-271.
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Publications and talks

Talks I

Category theory seminars:

2.2.2022 Category theory seminar, Johns Hopkins University,
Baltimore, MD: Codescent objects and lax coherence

9.6.2022 Algebra seminar, Masaryk University: On the
computation of codescent objects

18.5.2023 Algebra seminar, Masaryk University: Factorization
systems and double categories

4.10.2023 Algebra seminar, Masaryk University: Quasi-limits and
lax flexibility
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Publications and talks

Talks II

In-person workshops and conferences:

6.7.2023 Category theory 2023, Louvain-la-Neuve, Belgium:
Factorization systems as double categories

19.3.2024 PTSPC, Talinn, Estonia: Turning lax monoidal
categories into strict ones

27.6.2024 Category theory 2024, Santiago de Compostela, Spain:
Lax adjunctions and lax-idempotent pseudomonads

15.11.2024 PSSL 109, Leiden, Netherlands: Some
characterizations of lax idempotency for pseudomonads
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Publications and talks

Talks III

Online workshops and conferences:

28.10.2023 Octoberfest 2023: Quasi-limits and lax flexibility

21.10.2024 Second virtual workshop on double categories:
Double categories versus factorization systems
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