DOUBLE CATEGORIES VERSUS FACTORIZATION SYSTEMS

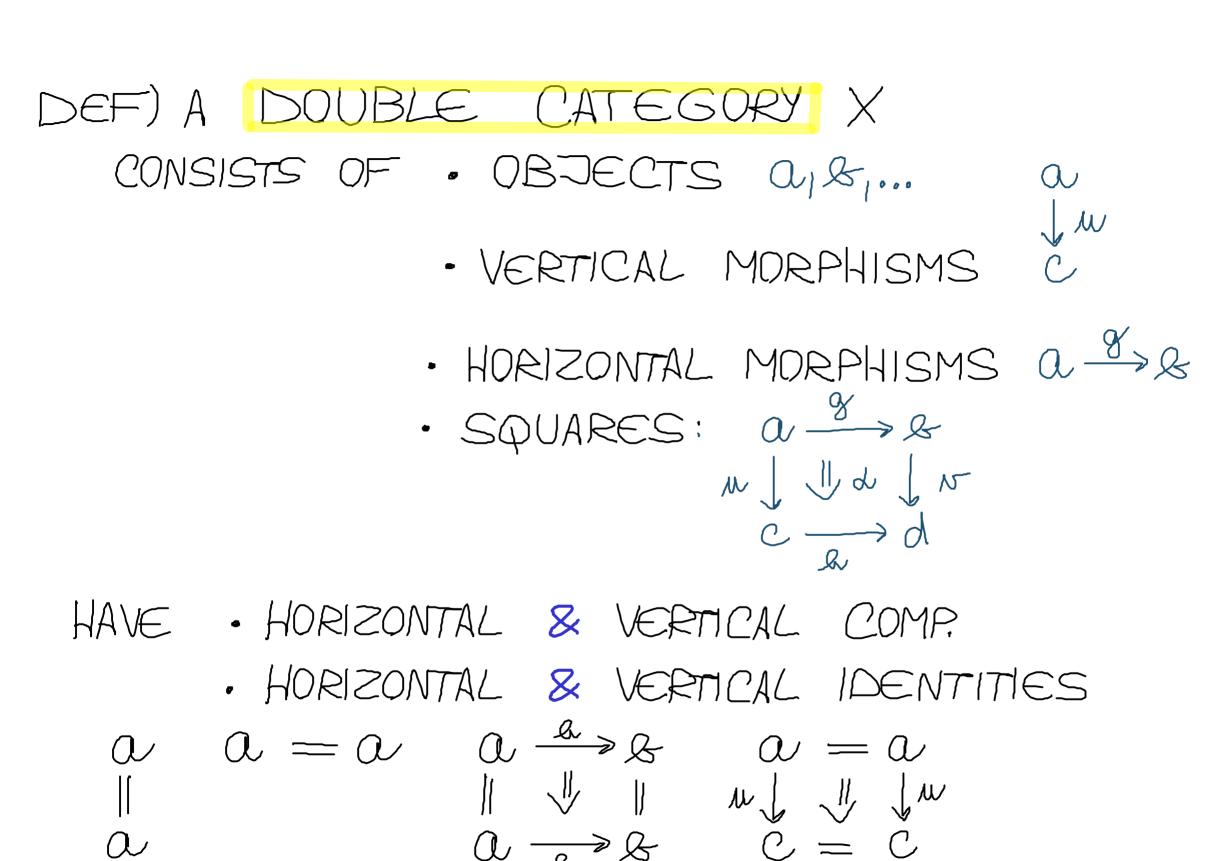
MILOSLAV ŠTĚPÁN miloslav. Stepan @mail. muni. cz

SECOND VIRTUAL WORKSHOP ON DOUBLE CATEGORIES

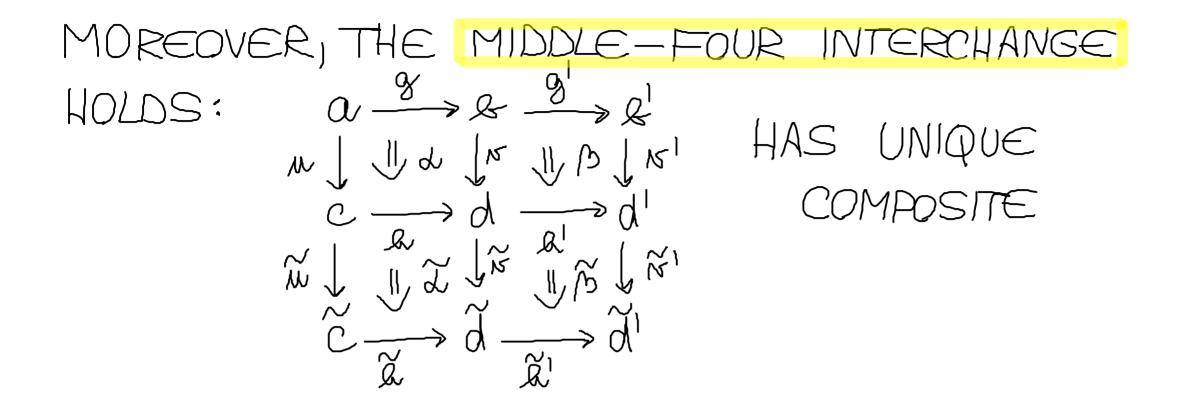
October 21, 2024

PLAN OF THE TALK

- I · DOUBLE CATEGORIES
 - DBL CATS <--> FACT. SYSTEMS
 - D. CODESCENT OBJECTS
 - · LAX MORPHISM CLASSIFIERS
 - · PINWHEELS



Q ---> &



SPECIAL CASE: IF OBX; VMORX, hmorX ¥ X X IS COMMUTATIVE MONOLD (ECKMANN-HILTON ARGUMENT)

SPECIAL CASE: A CATEGORY C:

0B: 060 HMOR: mote

VMOR: IDENTITIES

SPECIAL CASE: A 2-CATEGORY X: OB: OBR HMOR: MORX, $VMOR: A_a, a \in ObC$

 $SQS: \alpha \xrightarrow{g} k$ || John || $0 \xrightarrow{k} k$:= 2-CELL d: g =)aINR

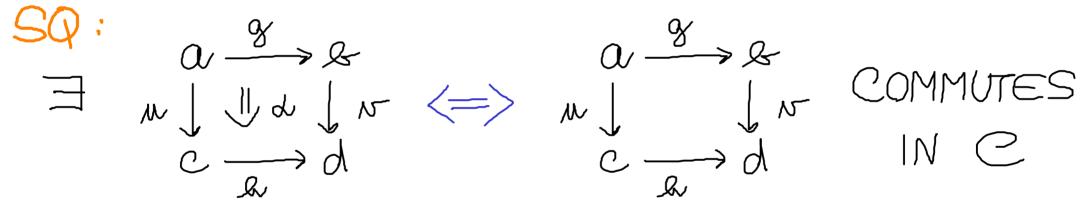
SQS: IDENTITIES

DEF) A DOUBLE FUNCTOR $F: X \to Y$ IS AN ASSIGNMENT $a \xrightarrow{g} g \xrightarrow{g} g \xrightarrow{fa} fa \xrightarrow{Fg} Fg \xrightarrow{fg} \xrightarrow{fg} fg \xrightarrow{fg} fg$

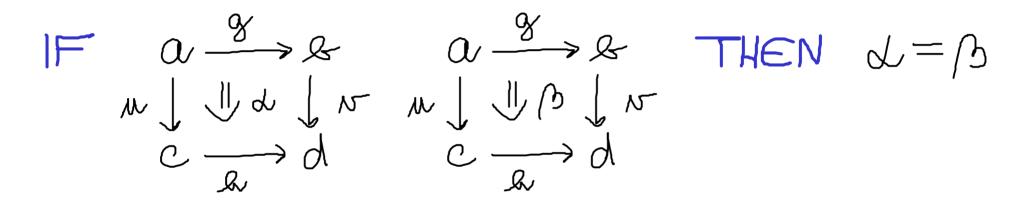
PRESERVING ALL COMP, ALL IDS >> HAVE A CATEGORY DUI

· Cot, 2-Cat EMBED* IN DU *IN MANY WAYS





- SUB-DOUBLE CAT'RY SPANNED BY PULLBACK SQUARES DOUBLE CATEGORY OF COMMUTATIVE SQS QUESTION: GIVEN C, WHAT PROPERTIES DOES SQ(C) HAVE? . IS FLAT:



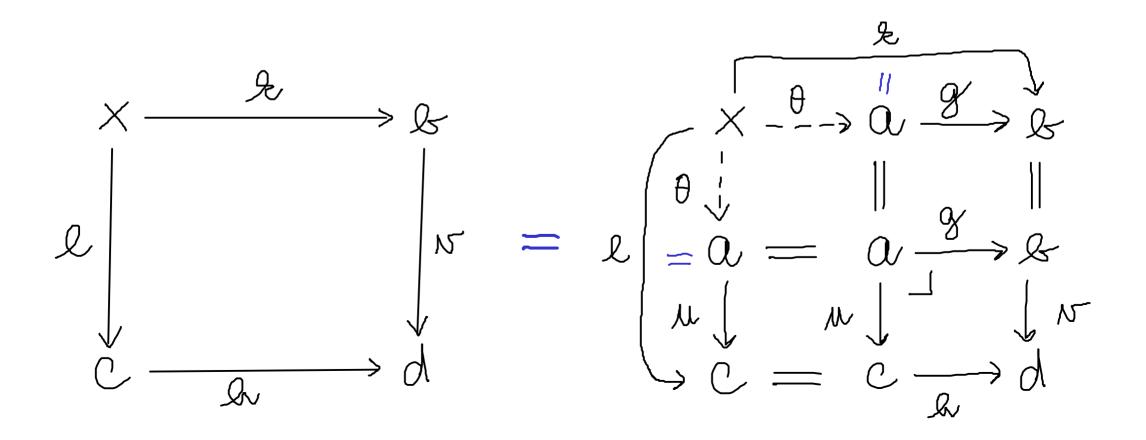
8	IS INVARIANT:	\sim
	$\begin{array}{ccc} & & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\$	$\exists : \begin{array}{c} a \xrightarrow{a} \\ \downarrow & \downarrow \end{pmatrix} \\ \downarrow & \downarrow \downarrow \\ c \xrightarrow{a} \\ \downarrow \\ c \xrightarrow{a} \\ \downarrow \\ $

 \rightarrow HERE $\tilde{a} := -1$

DOUBLE CATEGORY OF COMMUTATIVE SOS QUESTION: WHAT PROPERTIES DISTINGUISH A PULLBACK SQUARE FROM OTHER SQUARES IN SQ(C)? SAY SQUARE & IN DOUBLE CAT'RY X IS (BOT-RIGHT) BICARTESIAN $IF \neq d \exists ! \rho S.T.$ &____ $\begin{pmatrix} & \theta & \eta \\ & - & - \end{pmatrix} (\eta & -) \begin{pmatrix} & \eta \\ & \eta \end{pmatrix}$ $\rightarrow b$ $\begin{array}{c} \theta \downarrow & \Psi & \varphi \\ = & 0 \end{array} \xrightarrow{} & 0 \end{array} \xrightarrow{} & 0 \end{array} \xrightarrow{} & 0 \end{array}$ l1 l N $\mathcal{M} \downarrow \stackrel{\Downarrow}{\smile} \lambda = \stackrel{\frown}{\bigcirc} \stackrel{\frown}{\longrightarrow}$ ß

DOUBLE CATEGORY OF COMMUTATIVE SQS QUESTION: WHAT PROPERTIES DISTINGUISH A PULLBACK SQUARE FROM OTHER SQUARES IN SQ(2)?

IN SQ(C) THIS MEANS: 3! OST.



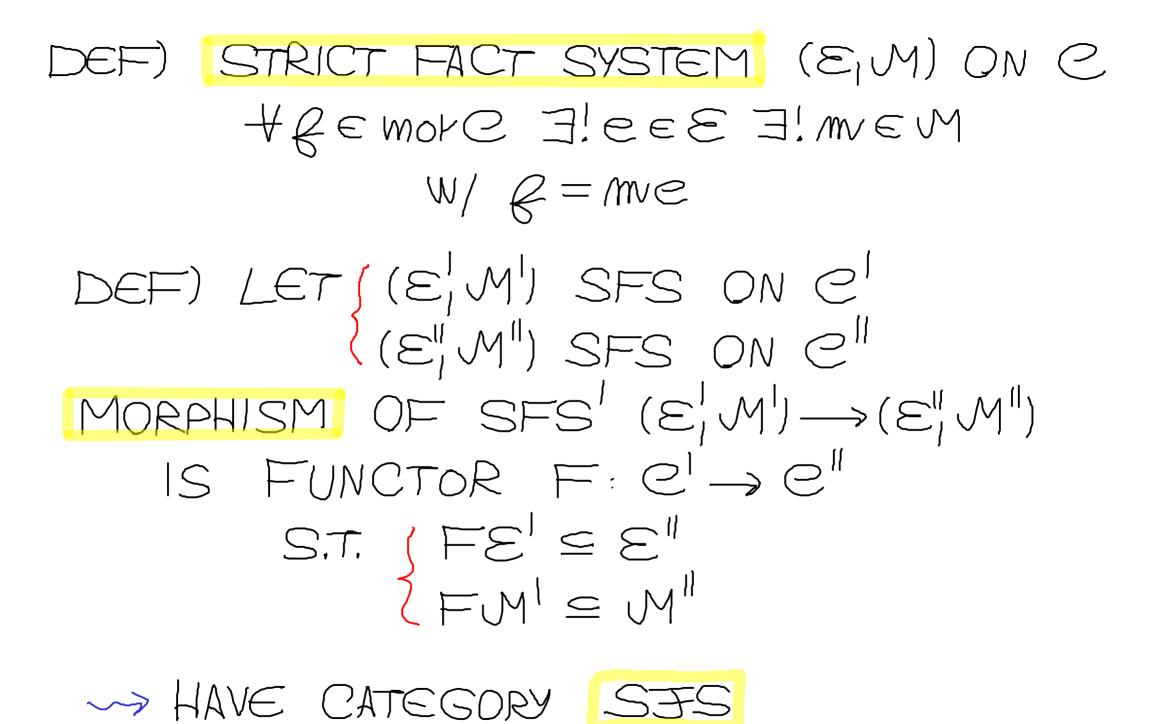
DOUBLE CATEGORY OF COMMUTATIVE SQS WE KNOW THAT PULLBACK PROJECTIONS ARE JOINTLY MONIC: $\alpha \xrightarrow{\pi_{z}} \& \qquad \forall \theta_{1} \tau: x \rightarrow \alpha$ $\pi_{1} \downarrow \qquad \int w \qquad \pi_{1} \tau = \pi_{1} \theta \qquad \& \qquad \pi_{2} \tau = \pi_{2} \theta$ $c \xrightarrow{\omega} d \qquad \Longrightarrow \tau = \theta$

QUESTION: HOW TO SAY DOUBLE CATILY? SAY $(\pi_1\pi_2)$ IS JOINTLY MONIC IN X IF $X \xrightarrow{\theta'} \alpha \qquad X \xrightarrow{\tau'} \alpha \qquad \text{IF} \quad \pi_1 \tau = \pi_1 \theta$

Strict factorization Systems

VERSUS

Double Categories

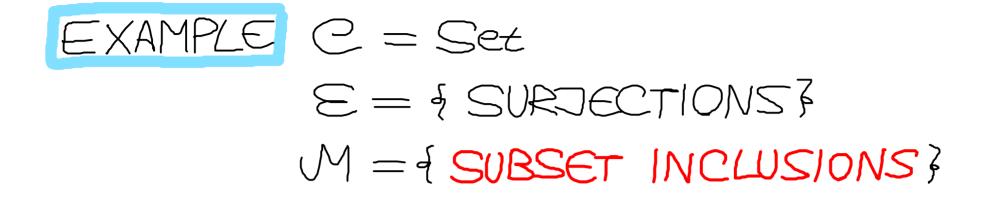


<u>SPECIAL CASE</u>: IF C MONOID, THIS IS ZAPPA-SZEP PRODUCT

EXAMPLE
$$C = GL_{m}(\mathbb{R})$$

 $\mathcal{E} = \{ UPPER - TRIANGULAR MAT W/>0 DIAGONAL 3 MAT MATRICES \}$
 $\mathcal{M} = \{ ORTHOGONAL MATRICES \}$
 $(QR DECOMPOSITION)$

EXAMPLE $C = A \times B$ $\mathcal{E} = \{(g_1 \Lambda_R) \mid g \in \text{mor} A_1 \& \in \text{ob} B\}$ RARE $\mathcal{M} = \{(\Lambda_{a_1}g) \mid a \in \text{ob} B_1 g \in \text{mor} A\}$ $(g_1g) = (\Lambda_1g) \circ (g_1\Lambda)$

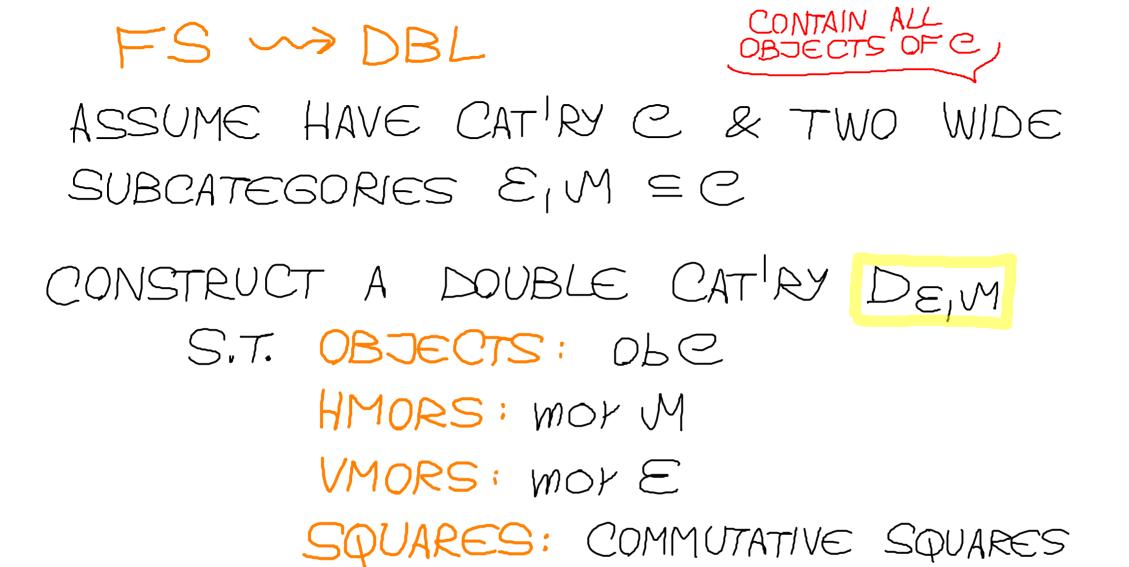


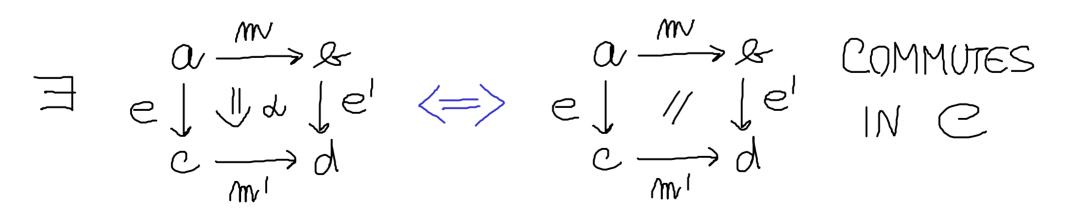
DIGRESSION - SOME FACTS: FACT: IN SFS $(\varepsilon_1 M)$, NECESSARIUS $\varepsilon_1 M = \{ | DENTITIES \ OF \ E \}$

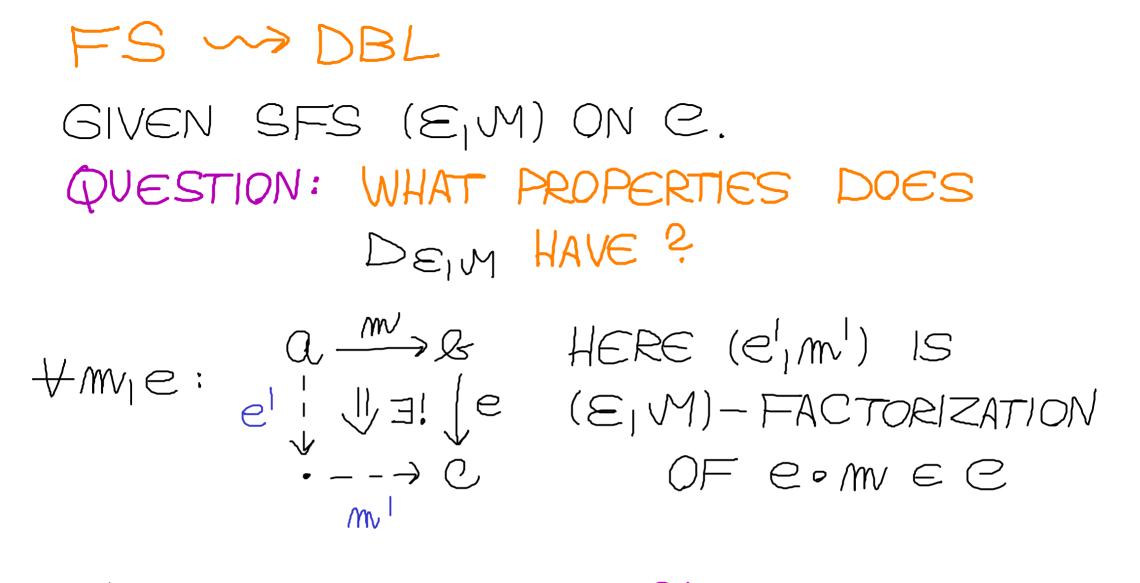
DIGRESSION CONTINUED

FACT: IF WE IDENTIFY CATEGORIES <>> MONADS IN Span(See) THEN: STRICT FS¹ <>> DISTRIBUTIVE LAWS

FACT: THEY ARE STRICT ALGEBRAS FOR THE SQUARING 2-MONAD $C \mapsto C^2 = C_{2\ell}(2|C)$







• THIS PROPERTY FULLY CHARACTERIZES X & DU THAT ARE OF FORM DE,M FOR A SFS (E,M) ON C

FS ~> DBL

CALL A DOUBLE CAT X CODOMAIN-DISCRETE $A \xrightarrow{\&} \& & a \xrightarrow{\&} \& a \xrightarrow{\&} & a \xrightarrow{\&} \& a \xrightarrow{\&} & a \xrightarrow{W} &$

(THE CODOMAIN FUNCTOR $d_0: X_1 \rightarrow X_0$ IS A DISCRETE OPFIBRATION)

DENOTE CODDISCK SFULL DU

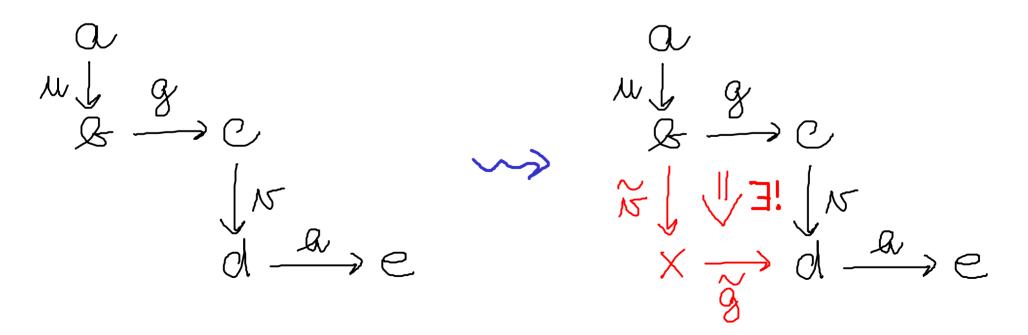
FACT: D: SES → CODDiscr IS AN EQUIVALENCE OF CATS

FS < DBL

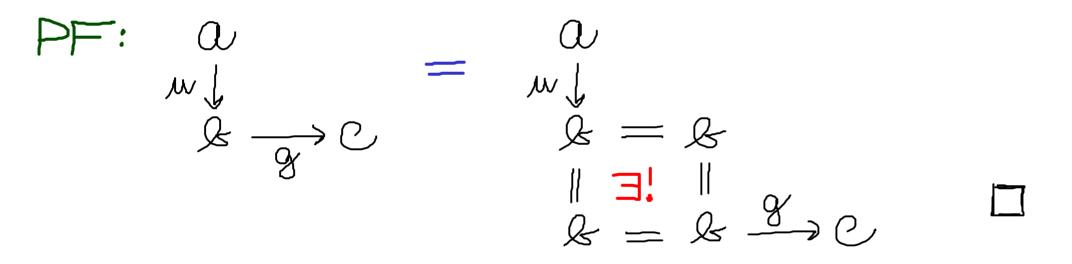
GIVEN A CODOMAIN-DISCRETE DOUBLE CAT X CONSTRUCT (CNV(X) W/ OB: OBX

 $MOR: \begin{array}{c} \alpha \\ \mu \downarrow \\ \varphi \\ \varphi \end{array} \begin{array}{c} \alpha \\ \varphi \end{array} \end{array}$

 $COMPOSITION: (N_1 k) \circ (u_1 g) = (N \circ u_1 k \circ \tilde{g})$

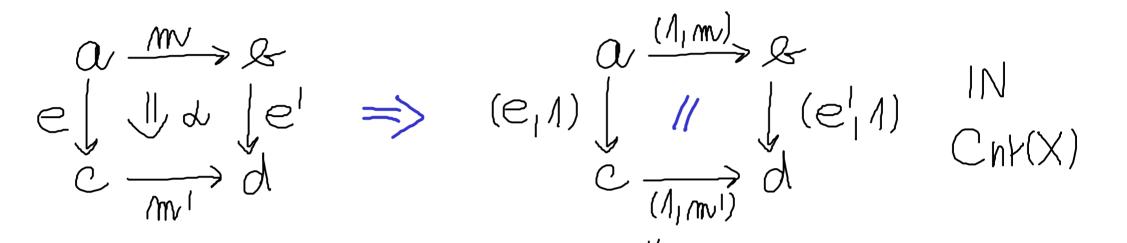


PROPERTIES OF Chr(X) (1/2):

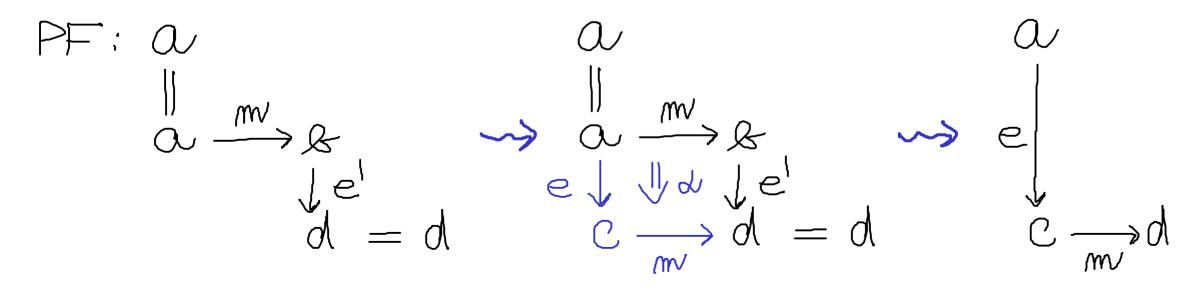


PROPERTIES OF Chr(X) (2/2):

2 SQUARES IN X "COMMUTE" IN CHK(X):



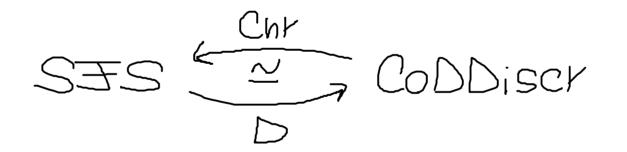
& Chr(X) IS "UNIVERSAL" W/ THIS PROPERTY



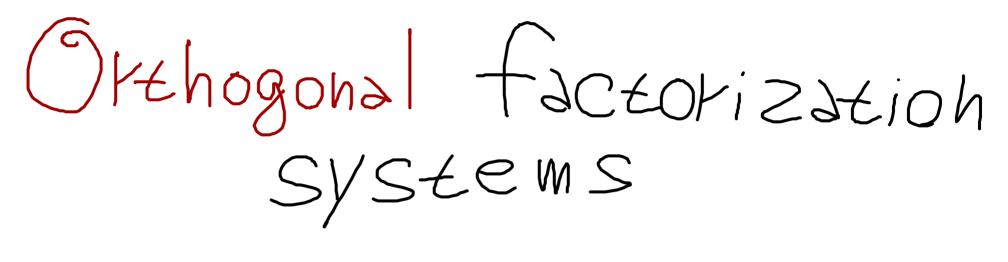
FS <>>> DBL

HAVE A FUNCTOR $C_{Nr}: CoDDiscr \rightarrow S \neq S$ $X \mapsto (\varepsilon_{X_1}M_X)$

THEOREM THE FUNCTOR D IS AN EQUIVALENCE W/ EQUIV. INVERSE CWY



STRICT FACT. ~ CODOMAIN-DISCR SYSTEMS ~ DOUBLE CATEGORIES



VERSUS

Double Categories

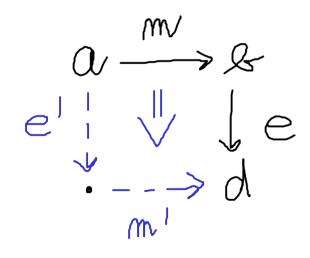
DEF) AN ORTHOGONAL FACT. SYSTEM ON C IS TWO WIDE SUBCATS E,M S.T. A HREMORD JEEE JAVEM: W/R = meAND THIS FACT IS UNIQUE UP TO ISO: $E \cap M = \{ | SOMORPHISMS OF e \}$ (2)

~ AGAIN HAVE CAT'RY OFS

EXAMPLE Set, $\mathcal{E} = \{ \text{SURJECTIONS} \}$ $\mathcal{M} = \{ \text{INJECTIONS} \}$

FACT: ANY STRICT FS $(\mathcal{E}, \mathcal{M})$ ON C INDUCES ORTHOG. FS $(\widetilde{\mathcal{E}}, \widetilde{\mathcal{M}})$ ON C IF WE PUT: $\widetilde{\mathcal{E}} := \{ ie \mid e \in \mathcal{E}_i i \in \mathcal{C} \mid so \}$ $\widetilde{\mathcal{M}} := \{ mii \mid m \in \mathcal{M}_i | i \in \mathcal{C} \mid so \}$

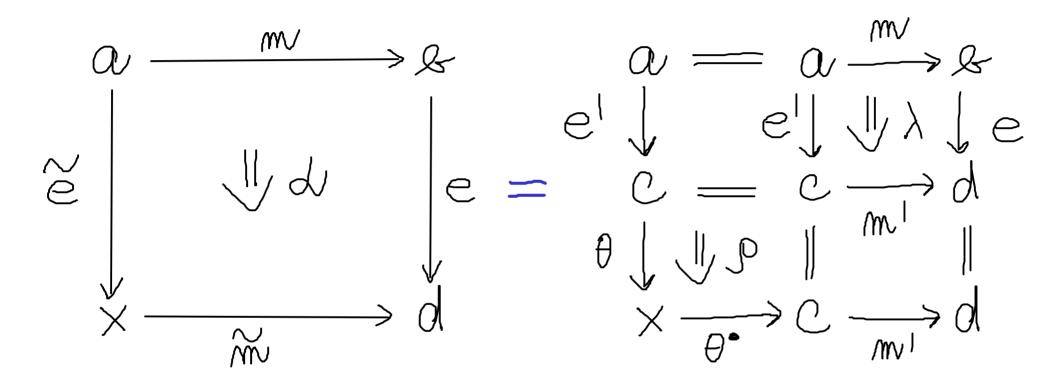
FS ~> DBL LET (EIM) BE AN ORTHOG. FS ON C. QUESTION: WHAT PROPERTIES DOES DEIM HAVE ? (1) EVERY a ---->& CAN BE FILLED. Je d



 $\alpha \xrightarrow{m}$ HERE (e'_1, m') IS THE $e' \downarrow \downarrow e (E, M) - FACTORIZATION$ $\downarrow - \rightarrow d OF e \cdot m \in C$

-> NO LONGER UNIQUE!

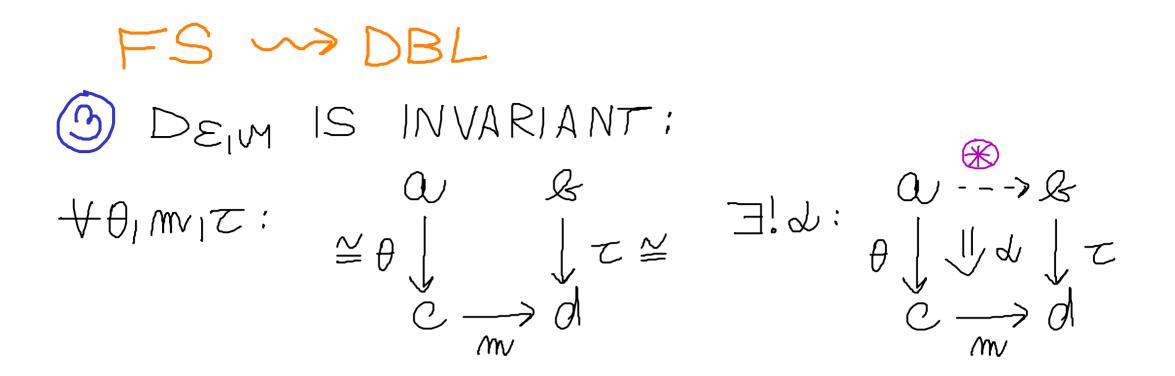
EVERY SQUARE IN DEIM IS (TOP-RIGHT) BICARTESIAN: 4d ∃.p:



TRANSLATES TO (SINCE $\theta^{\bullet} = \theta^{-1}$):

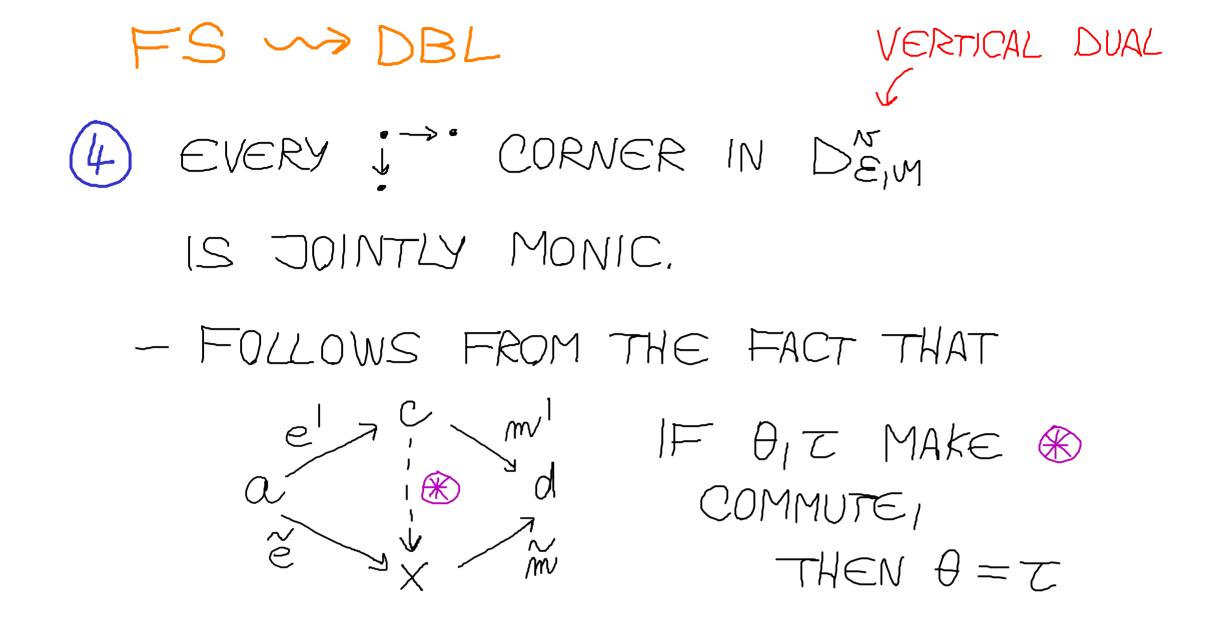
 e^{1} , C, m^{1} , d^{1} , d^{2}

INTUITION: // VERTICALLY OPPOSITE // VERTICALLY OPPOSITE PULLBACK SQS"



 \Re MUST EQUAL $\tau^{-1} \circ m \circ \theta \in more$ NOES RELONE TO M2

DOES BELONG TO M? YES SINCE T', O, M DO.



FS ~> DBL DEF) CALL X AN ORTHOGONAL FACTORIZATION DOUBLE CATEGORY

IF DEVERY CAN BE FILLED

② EVERY SQUARE IS TOP-RIGHT BICART.
 ③ X IS INVARIANT ≅i ji≅
 ④ EVERY j JOINTLY MONIC IN X^N

DENOTE FACEDAI SFULL DA

FACT: D: OFFS → FACEDЫ IS AN EQUIVALENCE OF CATS

FS ~ DBL

GIVEN A DOUBLE CAT'RY X SATISFYING () (2) CONSTRUCT (CHY(X) W/ OB: OBX

MOR: EQUIVALENCE IDS: [1a11a] CLASS OF CORNERS [Ee,M]

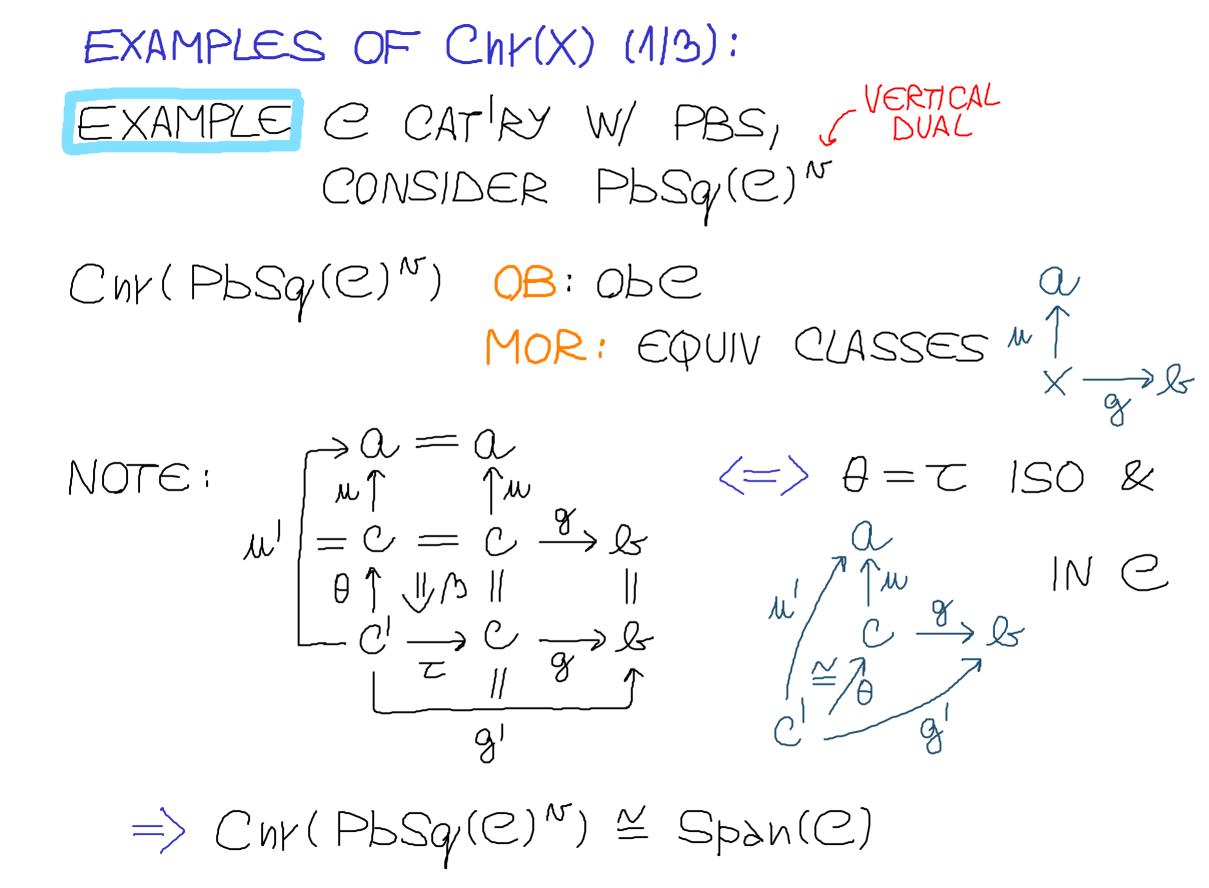
HERE (e,m)~(e',m') IF BB: SUCH BIS ·UNIQUE ·INVERTIBLE

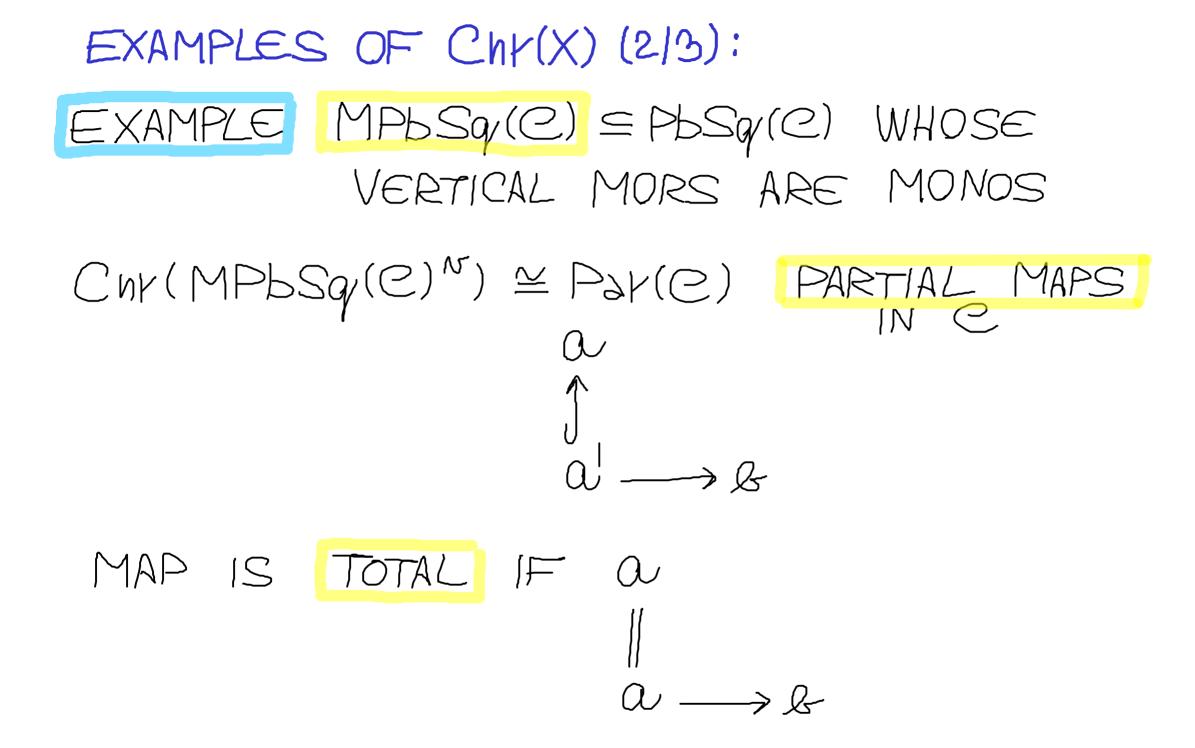
 $e' = c = c \xrightarrow{m} e$ $e' = c = c \xrightarrow{m} e$ $\theta \downarrow \Downarrow \land \parallel \qquad \parallel$ $e' = c \xrightarrow{m} e$ $\theta \downarrow \Downarrow \land \parallel \qquad \parallel$ $e' = c \xrightarrow{m} e$

FS ~ DBL

COMPOSITION: $[N_1 A] \circ [M_1 g] := [N_0 M_1 A \circ \tilde{g}]$

CHOOSE :



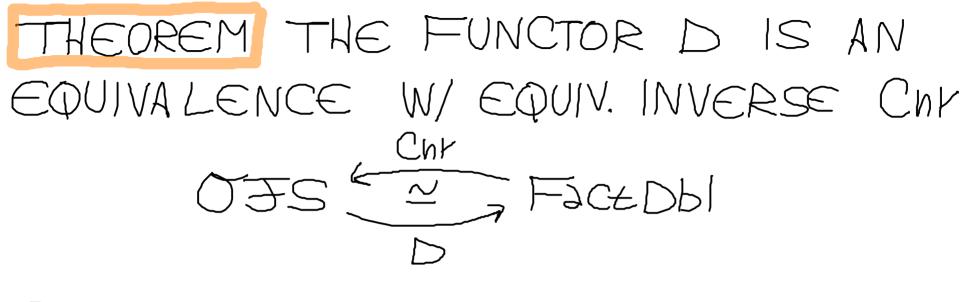


EXAMPLES OF Chr(X) (313): EXAMPLE HAVE A DOUBLE CAT'RY BOFIB W/ OBJECTS: SMALL CATEGORIES HMORS: DISCRETE OPFIBS VMORS: (BIJECTIONS ON OBJECTS) SQUARE: COMMUTATIVE SQS (nr(BOFIB) ≥ Cof CATEGORIES & COFUNCTORS · EVERY COFUNCTOR CAN BE PRESENTED AS: A $B, 0, \rightarrow \uparrow \qquad \begin{array}{c} \text{DISCR} \\ \text{OPFIB} \\ \text{IA}^{I} \xrightarrow{V} \\ \end{array} \xrightarrow{V} \\ \end{array}$

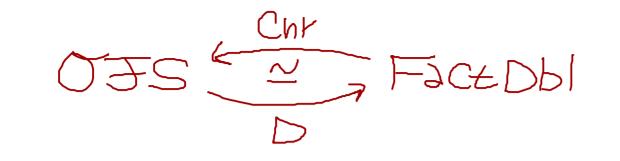
FS ~ DBL PROP LET X FACT. DOUBLE CAT'RY. THE TWO CLASSES $E_X = \{E_{M_1}A \} \mid M \setminus MOR \mid N \setminus X\}$ $M_X = \{E_{M_1}A \} \mid M \mid MOR \mid N \setminus X\}$ FORM AN ORTHOGONAL FS ON Chr(X).

FS ~ DBL PROP LET X FACT. DOUBLE CAT'RY. THE TWO CLASSES $\Sigma_X = \{ \Box_M | J \mid W \mid V M OR \mid N X \}$ $M_X = \{ E_1, A_1 | A HMOR IN X \}$ FORM AN ORTHOGONAL FS ON Chr(X). PROOF: (1) EVERY 'J' CAN BE FILLED (2) EVERY SQUARE IS TOP-RIGHT BICART. -> USED TO CONSTRUCT CHY(X) (5) X IS INVARIANT ≅i i≅ -> USED TO PROVE EX n MX = { ISOS } (4) EVERY ; JOINTLY MONIC IN X -> USED TO PROVE EXLMX

FS <>> DBL



ORTHOG, FACT. ~ FACTORIZATION SYSTEMS ~ DOUBLE CATEGORIES



NON-EXAMPLES Span(C) ... PbSq(C)^N LACKS JOINT MONICITY

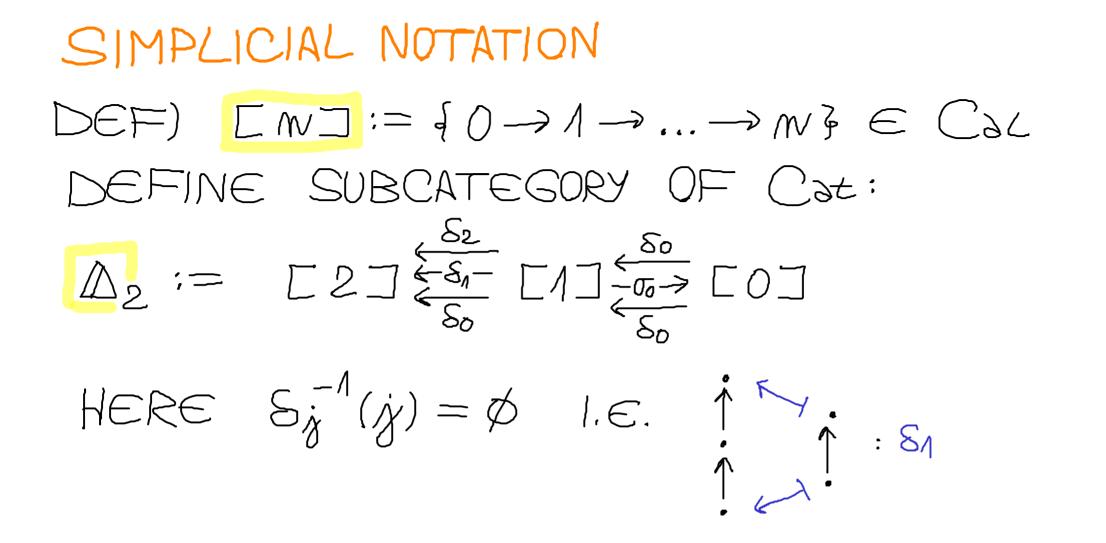
END OF

PART 1

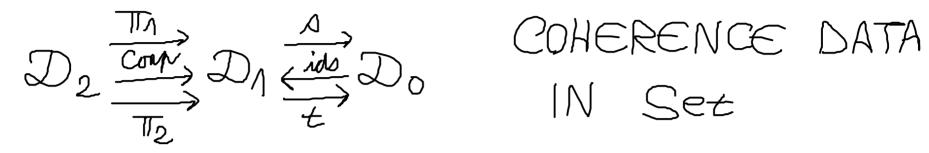
Codescent Objects

VERSUS

Double Categories



HAVE CANONICAL FUNCTOR $W: \Delta_2 \hookrightarrow C_{2^{t}}$ DIAGRAM $X: \Delta_2^{OP} \to C$ COHERENCE DATA W * X is called the Codescent object



- CAN EMBED IT IN Cat VIA Discr: Set -> Cat

EXAMPLE X DOUBLE CATEGORY, GIVES $X_2 \xrightarrow{d_1} X_n \xrightarrow{d_1} X_0$ COH DATA IN Cot

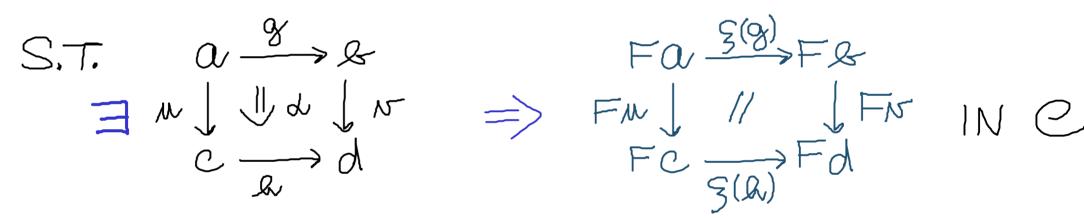
· Xo CAT'RY OF OBJECTS, VMORS

· X1 CAT'RY OF HMORS, SQUARES

FOR EXAMPLE:

CAN PROVE: IF X: $\triangle_2^{OP} \rightarrow C \ge DBL CAT,$ • A (W-WEIGHTED) COCONE WITH APEX C IS A PAIR ($F: X_0 \rightarrow \mathcal{C}, \xi: \mathcal{L}(X) \rightarrow \mathcal{C}$) OF FUNCTORS W/ $obF = ob\xi$

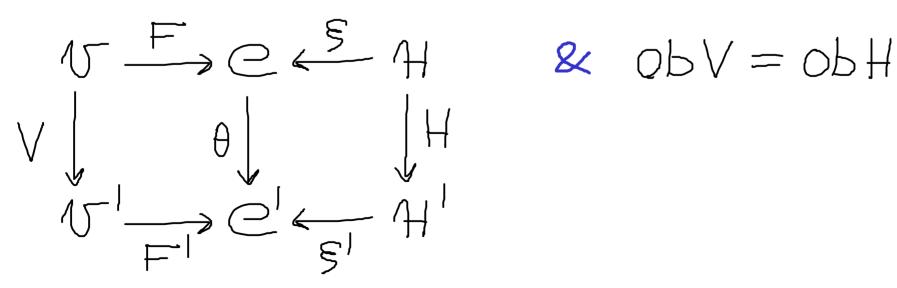
 $FC \xrightarrow{} Fd$

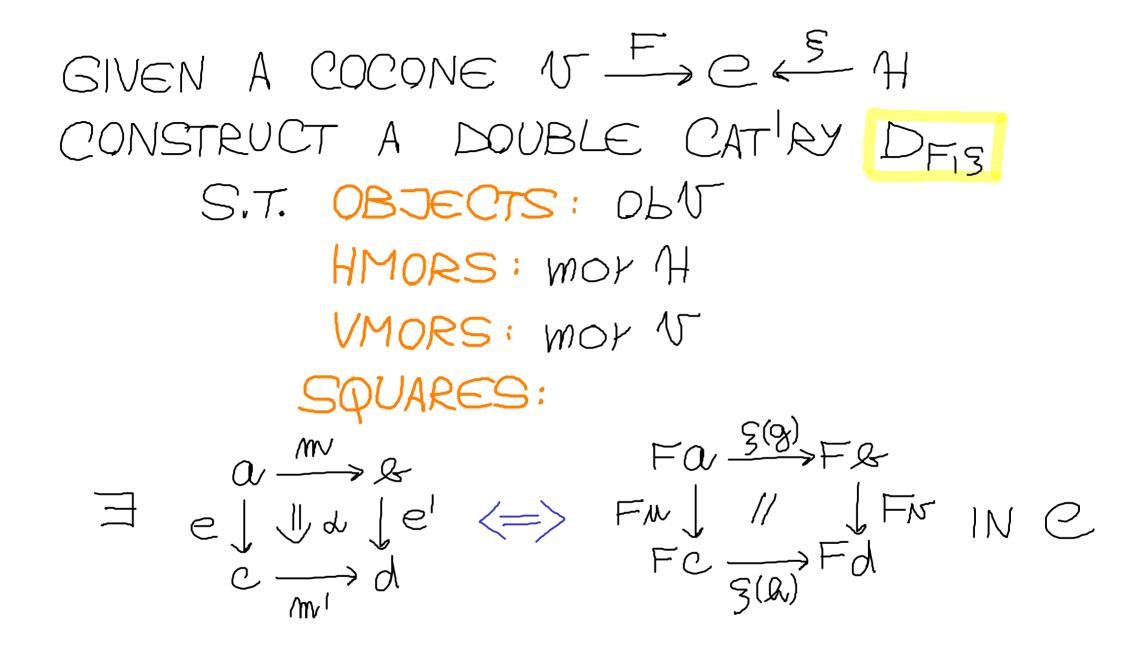


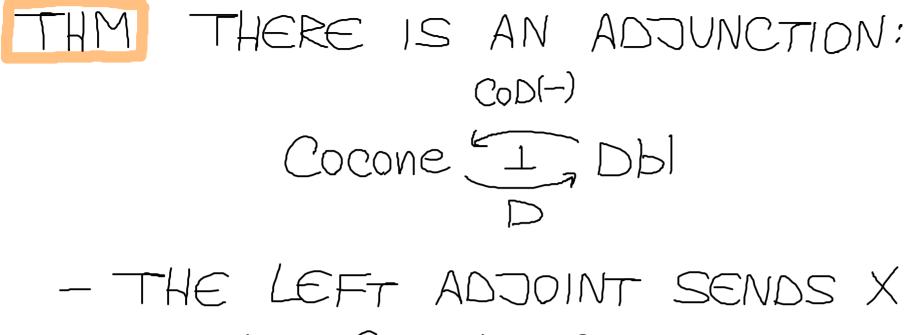
• IT IS A COLIMIT COCONE IF $\forall (G|\psi) \exists ! \theta : \qquad \chi_0 \xrightarrow{F} C \xleftarrow{S} L(X)$ G ψ

DEFINE A CATEGORY COCONE = Cat WITH OBJECTS 15 FOGE H PAIRS OF FUNS S.T. $\begin{cases} 0bV = 0bH \\ 0bF = 0bS \end{cases}$

MORPHISMS $(F', \varsigma') \longrightarrow (F'', \varsigma'')$ TRIPLES $(V_i \theta_i H)$ S.T.







TO ITS COLIMIT COCONE

COR THE ADJUNCTION RESTRICTS TO EQUIVALENCES

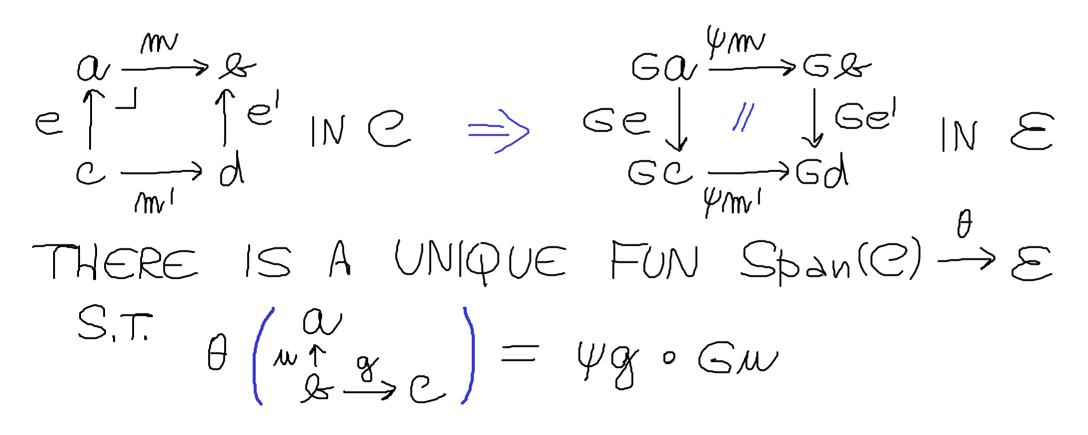
- $S \equiv S \simeq CoDDiscr$
- · OFS ~ Fact Db

ALSO: WEFS ~ FULL SUBCAT OF DW

(* 1)FOR A DOUBLE CAT'RY SATISFYING $(1)_{(2)}$ DENOTE $F_X: N(X) \longrightarrow Chr(X)$ $\begin{array}{c} \alpha \\ \mu \downarrow & \mapsto & \Box \mu \downarrow \Box \end{array}$ K $\xi_{X} : \mathcal{L}(X) \longrightarrow Chr(X)$ $(\alpha \xrightarrow{\&} \&) \mapsto [\Lambda \&]$

THE PAIR (F_X, g_X) is the conescent Object of X

RECALL $X = PbSq(C)^{N}$, Cnr(X) = Span(C)THM (UNIVERSAL PROPERTY OF SPANS) LET C CAT'RY W/ PBS. FOR ANY PAIR $C^{OP} \subseteq E \in C$ WITH THE PROPERTY THAT

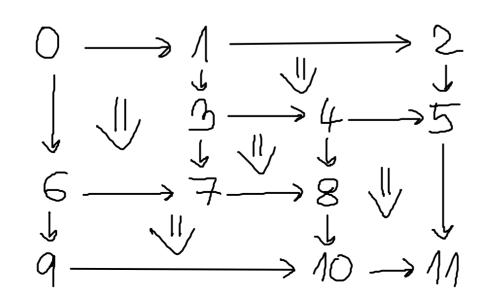


(#2) CODI-) COCONE ⊥, DDI IS AN IDEMPOTENT D ADJUNCTION AS SUCH, GIVES IDEMPOTENT MONAD ŤG DDI • ∀X € DDI, ŤX IS FLAT

BUT NOT EVERY FLAT DOUBLE CAT IS OF THIS FORM, CONSIDER:

CLEARY NOT

 $\widetilde{\top} X \cong X$



(米 ふ)

- A WORD ON LAX MORPHISM CLASSIFIERS EVERY STRICT MONCAT (U, \emptyset, I) GIVES A DOUBLE CAT'RY RES(1,0,I) OB: $(a_{1}, .., a_{m})$, $a_{\lambda} \in OBA$ HMOR: PARTIAL EVALUATION $E,G, \quad (a_1, a_2, a_3) \longrightarrow (a_1 \otimes a_2, a_3, \mathbf{I})$ VMOR: (RIIIRM), RIEMORA
- THE TRANSPOSE OF Res(U, Ø, I) IS A CODOMAIN-DISCR DOUBLE CAT ~ CAN COMPUTE COLIMIT

DENOTE $C_{HF}(A) := C_{HF}(Res(A_1\otimes_1 I)^T)$ $OB: (a_{1}...,a_{m})_{I} a_{i} \in OBA$ $MOR: (a_{1}a_{2}a_{3}) \longrightarrow (a_{1}\otimes a_{2}a_{3}I)$ $\int (B_{1}B_{2}B_{3})$ $(B_{1}B_{2}B_{3})$

- ADMITS A STRICT MONOIDAL STRUCTURE $(a_{1}...,a_{m}) \boxplus (a_{1}'...,a_{m}') = (a_{1}...,a_{m},a_{1}'...,a_{m}')$ W/ UNIT ()
- · ADMITS A STRICT FACT. SYSTEM

FACT: IT CLASSIFIES Lax Monoidal Functors

+(F,F) LAX MONOIDAL ∃!F' STRICT MONOIDAL

S.T. $(A_{1}\otimes_{1}I) \longrightarrow (Chr(A)_{1}\boxplus_{1}())$ $(F,F) \leq (B_{1}\odot_{1}I') \leq F'$

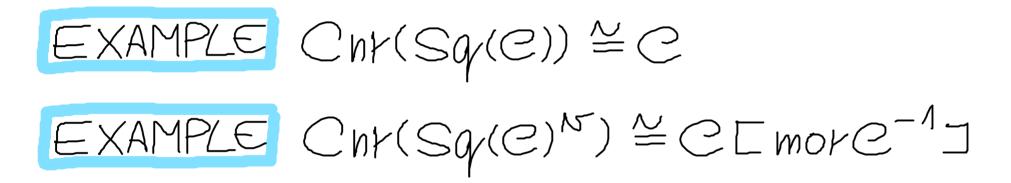
SAME STORY FOR LAX FUNCTORS, LAX DOUBLE FUNCTORS, LAX NAT TRS! (...) (* 4)

LET X A GENERAL DOUBLE CAT'RY. WHAT IS THE FORMULA FOR COD(X)? Chr(X) OB: ODX MOR: EQUIVALENCE CLASSES OF PATHS E GAI--, Gm J W/ Gi EITHER HMOR OR VMOR

CONGRUENCE GENERATED BY:

 $\exists e \downarrow \Downarrow d \downarrow e' \Rightarrow (m_1 e') \sim (e_1 m')$ $c \xrightarrow{m'} d$ $(g_{11}g_{2}) \sim (g_{2} \circ g_{1}) \text{ IF } g_{1} \text{ BOTH } VMOR \text{ OR } HMOR$ $(\Lambda_{a}) \sim () \text{ IF } \Lambda_{a} \text{ HORIZ ID } OR \text{ VERT. ID}$

EXAMPLE IF C CATEGORY REGARDED AS DOUBLE CAT'RY C_1 $Chr(C) \cong C$



- SARE THERE NON-FLAT DOUBLE CATS WITH BICARTESIAN SQS?
- S WHAT IS THE DOUBLE CATEGORICAL COUNTERPART OF SES $\longrightarrow OES$ $(E, M) \mapsto (\tilde{E}, \tilde{M})$
- S HOW TO DESCRIBLE DOUBLE CATS OF FORM DEIM FOR A WFS (EIM) IN ELEMENTARY TERMS?

SIVEN OFS (E,M) ON C, DOES DE,M HAVE ANY (CO)LIMITS?

SIS TX A UNIVERSAL FLAT DOUBLE CAT'RY ASSOCIATED TO X WHICH ADMITS COMPOSITION OF PINWHEELS?

REFERENCES

[S1] Factorization systems and double categories. Theory and Applications of Categories, 41(18): 551 - 592, 2024[S2] Lax Structures in 2-Category theory. Doctoral thesis, Masaryk University, Faculty of Science, Brno. [Weber] Internal algebra Classifiers as Codescent objects of Crossed internal Calegories. Theory and Applications of Categories, 30(50),2015

THANK YOU FOR YOUR ATTENTION.

