Lax adjunctions and lax-idempotent pseudomonads

Miloslav Štěpán

Masaryk University miloslav.stepan@mail.muni.cz

Category Theory 2024 June 27, 2024

Plan of the presentation

- Motivation,
- Colax adjunctions U-extensions,
- 3 Kleisli 2-category for a lax-idempotent pseudomonad,
- 4 Two-dimensional monad theory.

Motto: I make colax adjunctions.

Motivation

Motivation

Recall [BKP, 1989] – this paper concerns itself with a 2-monad T and its 2-categories T-Alg_s and T-Alg.

Examples of algebras and pseudo-morphisms include:

- · monoidal categories and monoidal functors,
- small 2-categories and pseudofunctors,
- \bullet categories that admit $\Phi\text{-colimits}$ and functors preserving them.

[BKP, 1989] proves their bicocompleteness, existence of various biadjunctions involving T-Alg...

Question: What if we replace "pseudo" by "lax"?

Colax adjunctions \longleftrightarrow *U*-extensions

Definition

Let \mathcal{C}, \mathcal{D} be 2-categories. A *colax adjunction* consists of two pseudofunctors $U: \mathcal{D} \to \mathcal{C}$ and $F: \mathcal{C} \to \mathcal{D}$, two colax natural transformations $\eta: 1 \Rightarrow UF$ and $\epsilon: FU \Rightarrow 1$ and two modifications:

that are subject to the swallowtail identities:

the following have to be equal to the identity on η and ϵ respectively:

We will denote the situation as follows:

$$(\Psi, \Phi) : (\epsilon, \eta) : F \rightarrow U : \mathcal{D} \rightarrow \mathcal{C}.$$

Examples

Example

A *biadjunction*: when η , ϵ are pseudonatural and Ψ , Φ are invertible. I will denote this by the usual symbol " \dashv ".

Example

Let \mathcal{K} be a 2-category. The 2-functor $\mathcal{K} \to *$ admits a left colax adjoint if and only if there is an object $L \in \mathcal{K}$ such that:

For every $A \in \mathcal{K}$, $\mathcal{K}(L, A)$ admits an initial object.

Definition, [Bunge, 1974]

Let $U : \mathcal{C} \to \mathcal{D}$ be a pseudofunctor, $y_A : A \to UA'$, $f : A \to UB$ 1-cells of \mathcal{D} . The *left U-extension* of f along y_A is a pair (f', ψ) such that:

Definition, [Bunge, 1974]

A collection of 1-cells $\{y_A : A \rightarrow UA', A \in \mathcal{C}\}$ is coherently closed for *U*-extensions if:

- for every $f: A \to UB$ we have a **choice** of a *U*-extension $(f^{\mathbb{D}}, \mathbb{D}_f)$,
- the following is the left *U*-extension of f along y_X :

Theorem

Let $U: \mathcal{C} \to \mathcal{D}$ be a pseudofunctor, $F: \text{ob } \mathcal{D} \to \text{ob } \mathcal{C}$ a function, $\{y_A: A \to UFA, A \in \mathcal{C}\}$ a collection coherently closed for U-extensions. Assume that the following are U-extensions:

Then there is a pseudofunctor $F: \mathcal{D} \to \mathcal{C}$, $y: 1_{\mathcal{D}} \Rightarrow UF$ is colax natural and there is a colax adjunction:

$$(\Psi, \Phi) : (\epsilon, y) : F \dashv\!\!\dashv U : \mathcal{C} \to \mathcal{D}$$

Theorem

Let $(\Psi, \Phi) : (\epsilon, y) : F \rightarrow U : \mathcal{C} \rightarrow \mathcal{D}$ be a colax adjunction between pseudofunctors in which Ψ is invertible.

Then the components of the unit $y_A : A \rightarrow UFA$ are coherently closed for U-extensions.

Remark

The variation of these theorems where U is a 2-functor and F is a colax functor appeared in [Gray, 2006], [Bunge, 1974].

Kleisli 2-category for a lax-idempotent pseudomonad

Pseudomonads

Definition

Let K be a 2-category. A *pseudomonad* on K consists of a pseudofunctor $T : K \to K$, pseudonatural transformations $m : T^2 \Rightarrow T$, $i : 1 \Rightarrow T$ and invertible modifications:

subject to axioms.

Definition

Given a pseudomonad D on K:

Denote by Ps-D-Alg the 2-category of pseudo-*D*-algebras.

Denote by \mathcal{K}_D the *Kleisli 2-category*, defined as the full sub-2-category of Ps-D-Alg on free *D*-algebras.

Definition

A pseudomonad (T, m, i) is said to be *lax-idempotent* if:

$$m_A \rightarrow i_{TA}$$
, for all $A \in \mathcal{K}$,

with the counit of the adjunction $m_A \circ i_{TA} \cong 1_{TA}$ being given by the invertible modification of the pseudomonad.

Example - lax-idempotent pseudomonad

The small presheaf pseudomonad $\mathcal{P}: \mathsf{CAT} \to \mathsf{CAT}$ sending a locally small category \mathcal{A} to the full subcategory of $[\mathcal{A}^{op}, \mathsf{Set}]$ spanned by small presheaves.

The Kleisli 2-category CAT $_{\mathcal{P}} \simeq \text{Prof}$, the bicategory of locally small categories and *small profunctors*.

Example - colax-idempotent 2-monad

Fix a 2-category \mathcal{K} with comma objects and $C \in \mathcal{K}$. There is a 2-monad $T : \mathcal{K}/C \to \mathcal{K}/C$ whose pseudo-T-algebras are fibrations in \mathcal{K} .

We have that: $(\mathcal{K}/C)_T \cong \mathcal{K}//C$, the *colax slice 2-category*.

Example - lax-idempotent 2-comonad

Lax morphism classifier 2-comonad Q_l on the 2-category T-Alg_s.

The MAIN Colax Adjunction Theorem

Let D be a lax-idempotent pseudomonad on \mathcal{K} . Denote by $J:\mathcal{K}\to\mathcal{K}_D$ the inclusion to the Kleisli 2-category. Any biadjunction as on the left induces a colax adjunction as on the right:

Proof

Consider the components of the counit $s_L: GJ_DHL \to L$ of the biadjunction. They will also be the components of the counit of the colax adjunction. The proof consists of showing that they are coherently closed for G-lifts.

Corollary 1

Given a lax-idempotent pseudomonad D on \mathcal{K} , the free-forgetful biadjunction induces a colax adjunction between the Kleisli 2-category and the 2-category of algebras:

Remark

This is a categorification of the fact that for an idempotent 1-monad, the EM and Kleisli categories are equivalent.

Corollary 2

Given a lax-idempotent pseudomonad D on a 2-category K, the biadjunction between the base 2-category and the Kleisli 2-category induces a colax adjunction on the Kleisli 2-category:

Remark

Colax adjoints are **not** unique up to an equivalence.

Corollary 3 - change-of-base

Let $D: \mathcal{K} \to \mathcal{K}$ be lax-idempotent pseudomonad and let $T: \mathcal{L} \to \mathcal{L}$ be a pseudomonad. Assume that there is a biadjunction between the base 2-categories:

Assume that *L* extends to $L^{\#}: \mathcal{K}_{D} \to \mathcal{L}_{T}$. Then we have:

Example

Given a 2-category K with comma objects and pullbacks, recall that any 1-cell $k: C \to D$ gives a 2-adjunction:

By the previous theorem, this gives rise to a **lax** adjunction between the colax slice 2-categories:

Weak limits

Definition

Let \mathcal{K} be a 2-category and $F: J \to \mathcal{K}$ a 2-functor. We say that a cone $\lambda: \Delta L \to F$ exhibits L as a *coreflector-limit* of F if for every $A \in \mathcal{K}$:

$$\mathcal{K}(A,L) \xrightarrow{\kappa_A} \mathsf{Cone}(A,F)$$

$$\theta \qquad \mapsto \qquad \theta \lambda$$

is a coreflector (admits a left adjoint with invertible unit).

Remark

A variant of this called *quasi-colimits* were defined in [Gray, 2006]. Also this is a special case of an *enriched weak limit* of [LR, 2012].

In elementary terms

A coreflector-limit cone $\lambda:\Delta L\Rightarrow F$ satisfies that for every other cone $\mu:\Delta A\Rightarrow F$, there exists a map $\theta_{\mu}:A\rightarrow L$ and an isomorphism Φ_{i} as pictured below:

Moreover, given a 1-cell $\theta: C \to A$ and a modification $\sigma: \mu \to \theta \lambda$, there exists a unique 2-cell $\overline{\sigma}: \theta_{\mu} \Rightarrow \theta$ such that:

Example

In case κ is an equivalence/isomorphism, we get *bilimits/2-limits*.

Example

An object L in a 2-category K is *coreflector-initial* if and only if: For every $A \in K$, K(L, A) admits an initial object.

Consider the 2-category MonCat_l of monoidal categories and lax monoidal functors. * is coreflector-initial because for every monoidal category $(\mathcal{A}, \otimes, I)$:

$$\mathsf{MonCat}_I(*,\mathcal{A}) \cong \mathsf{Mon}(\mathcal{A}),$$

the category of monoids in A.

Corollary 4

Let D be a lax-idempotent pseudomonad on a 2-category \mathcal{K} . If \mathcal{K} admits J-indexed bilimits, \mathcal{K}_D admits them as coreflector-limits.

Example

The bicategory Prof of locally small categories and small profunctors is coreflector-complete.

Two-dimensional monad theory

Let T be a 2-monad on a 2-category K.

If T-Alg_s admits enough colimits, the inclusion T-Alg_s \rightarrow T-Alg_l admits a left 2-adjoint and in turn generates a 2-comonad Q_l : T-Alg_s \rightarrow T-Alg_s called the *lax morphism classifier 2-comonad*. Notice we have that $(T-Alg_s)_{Q_l} \cong T-Alg_l$.

If K admits oplax limits of arrows, Q_l is lax-idempotent.

If these conditions are met, we will say that T satisfies **Property L**.

Special Case of Main Colax Adjunction Theorem

Let *T* satisfy **Property L**. Any 2-adjunction below left induces a colax adjunction below right:

Corollary 1

Let S, T be 2-monads satisfying **Property L** on a 2-category \mathcal{K} . Let $\theta: S \to T$ be a 2-monad morphism. Assume that the induced 2-functor $\theta^*: \text{T-Alg}_s \to \text{S-Alg}_s$ admits a left 2-adjoint. Then:

Recall the following:

Theorem, [BKP, 1989]

Let T be a 2-monad on a 2-category satisfying **Property L**. If T-Alg $_s$ is cocomplete, T-Alg is bicocomplete.

The 2-category of lax morphisms is seldom bicocomplete. But we have:

Corollary 2

Let T be a 2-monad on a 2-category satisfying **Property L**. If T-Alg_s is cocomplete, T-Alg_t is coreflector-cocomplete.

Example

The following 2-categories are coreflector-cocomplete:

- the 2-category of monoidal categories and lax-monoidal functors and its symmetric/braided variants,
- the 2-category of small 2-categories, lax functors, and icons,
- for a set Φ of small categories, the 2-category Φ -Colim_I of small categories that admit a choice of J-indexed colimits for $J \in \Phi$ and **all** functors between them.

Bonus: weak equalizers in Prof

What is the coreflector-equalizer of the following pair in Prof?

$$\mathcal{A} \xrightarrow{\stackrel{G}{\longrightarrow}} \mathcal{B}$$

Compute the equalizer in CAT of the following:

$$\mathcal{E} \xrightarrow{E} \mathcal{PA} \xrightarrow{\mathcal{PG}} \mathcal{PB}$$

Claim: The weak limit in Prof given by transpose of *E*:

$$\mathcal{E} \xrightarrow{\hat{\mathcal{E}}} \mathcal{A}$$

References I

Blackwell, Robert, Gregory M. Kelly, and A. John Power.

Two-dimensional monad theory.

Journal of pure and applied algebra 59.1 (1989): 1-41.

Bunge, Marta C.

Coherent extensions and relational algebras.

Transactions of the American Mathematical Society 197 (1974): 355-390.

Gray, John Walker.

Formal category theory: adjointness for 2-categories.

Vol. 391. Springer, 2006.

Lack, Stephen.

Limits for lax morphisms.

Applied Categorical Structures 13 (2005): 189-203.

Lack, Stephen, and Jiří Rosický.

Enriched weakness.

Journal of Pure and Applied Algebra 216.8-9 (2012): 1807-1822.

References II

Štěpán, Miloslav.

Colax adjunctions and lax-idempotent pseudomonads. *arXiv preprint* arXiv:2405.00488 (2024).

Thank you.