Factorization systems as double categories

Miloslav Štěpán

Masaryk University miloslav.stepan@mail.muni.cz

Category Theory 2023 June 6, 2023

Plan of the presentation

- 1 Some double category theory,
- Strict factorization systems (certain) double categories,
- ③ Orthogonal factorization systems ← (certain) double categories.

Plan of the presentation

- 1 Some double category theory,
- 2 Strict factorization systems (certain) double categories,
- ③ Orthogonal factorization systems ← ← (certain) double categories.

Plan of the presentation

- 1 Some double category theory,
- 2 Strict factorization systems (certain) double categories,
- 3 Orthogonal factorization systems ← (certain) double categories.

Definition

A *double category X* consists of objects, horizontal morphisms, vertical morphisms, and squares:

$$\begin{array}{ccc}
a & \xrightarrow{g} & b \\
\downarrow u & & \downarrow v \\
c & \xrightarrow{h} & d
\end{array}$$

The squares can be composed horizontally and vertically and both compositions are associative and unital.

It can be equivalently described as a category object in Cat, i.e. a diagram in Cat satisfying some properties:

Definition

A *double category X* consists of objects, horizontal morphisms, vertical morphisms, and squares:

$$\begin{array}{ccc}
a & \xrightarrow{g} & b \\
\downarrow \downarrow \downarrow \\
c & \xrightarrow{h} & d
\end{array}$$

The squares can be composed horizontally and vertically and both compositions are associative and unital.

It can be equivalently described as a category object in Cat, i.e. a diagram in Cat satisfying some properties:

Duals

A double category X admits 8 duals: the vertical opposite X^{v} , horizontal opposite X^h , transpose X^T ...

$$\begin{array}{ccc}
a & \xrightarrow{g} & b \\
\downarrow \downarrow & \downarrow \downarrow \\
c & \xrightarrow{h} & d & \text{in } X & \Longleftrightarrow
\end{array}$$

$$\begin{array}{ccc}
a & \xrightarrow{u} & c \\
g \downarrow & \downarrow \alpha & \downarrow h \\
b & \xrightarrow{V} & d & \text{in } X^T
\end{array}$$

in
$$X^T$$

Duals

A double category X admits 8 duals: the *vertical opposite* X^{v} , *horizontal opposite* X^{h} , *transpose* X^{T} ... For example:

$$\begin{array}{ccc}
a & \xrightarrow{g} & b \\
\downarrow u & & \downarrow v \\
c & \xrightarrow{h} & d
\end{array}$$

in *X*

$$\iff$$

$$\begin{array}{ccc}
a & \xrightarrow{u} & c \\
\downarrow g & & \downarrow \alpha \\
b & \xrightarrow{V} & d
\end{array}$$

in X^7

Basic examples

Example

 $\mathcal C$ a category, there is double category $\mathsf{Sq}(\mathcal C)$ such that:

- objects are the objects of C,
- vertical and horizontal morphisms are morphisms of C,
- ullet squares are commutative squares in ${\mathcal C}$

Example

We will encounter these two of its sub-double categories: $PbSq(C) \supseteq MonoPbSq(C)$

Example

There is double category BOFib of (small) categories, bijections on objects, discrete opfibrations, pullback squares.

Basic examples

Example

 $\mathcal C$ a category, there is double category $\mathsf{Sq}(\mathcal C)$ such that:

- objects are the objects of C,
- vertical and horizontal morphisms are morphisms of C,
- squares are commutative squares in ${\cal C}$

Example

We will encounter these two of its sub-double categories: $PbSq(\mathcal{C}) \supseteq MonoPbSq(\mathcal{C})$

Example

There is double category BOFib of (small) categories, bijections on objects, discrete opfibrations, pullback squares.

Basic examples

Example

 \mathcal{C} a category, there is double category $Sq(\mathcal{C})$ such that:

- objects are the objects of C,
- vertical and horizontal morphisms are morphisms of C,
- squares are commutative squares in ${\cal C}$

Example

We will encounter these two of its sub-double categories: $PbSq(\mathcal{C}) \supseteq MonoPbSq(\mathcal{C})$

Example

There is double category BOFib of (small) categories, bijections on objects, discrete opfibrations, pullback squares.

Strict factorization systems (certain) double categories

Strict factorization systems

Definition

A *strict factorization system* on a category \mathcal{C} consists of two wide subcategories $\mathcal{E}, \mathcal{M} \subseteq \mathcal{C}$ with the property that: For every morphism $f \in \mathcal{C}$ there exist unique $e \in \mathcal{E}$, $m \in \mathcal{M}$ with:

$$f = m \circ e$$
.

Definition

Denote by SFS the category whose:

- objects are strict factorization systems $\mathcal{E} \subseteq \mathcal{C} \supseteq \mathcal{M}$,
- a morphism $(\mathcal{E} \subseteq \mathcal{C} \supseteq \mathcal{M}) \to (\mathcal{E}' \subseteq \mathcal{C}' \supseteq \mathcal{M}')$ is a functor $F : \mathcal{C} \to \mathcal{C}'$ satisfying $F(\mathcal{E}) \subseteq \mathcal{E}'$ and $F(\mathcal{M}) \subseteq \mathcal{M}'$.

Strict factorization systems

Definition

A *strict factorization system* on a category \mathcal{C} consists of two wide subcategories $\mathcal{E}, \mathcal{M} \subseteq \mathcal{C}$ with the property that: For every morphism $f \in \mathcal{C}$ there exist unique $e \in \mathcal{E}$, $m \in \mathcal{M}$ with:

$$f = m \circ e$$
.

Definition

Denote by SFS the category whose:

- objects are strict factorization systems $\mathcal{E} \subseteq \mathcal{C} \supseteq \mathcal{M}$,
- a morphism $(\mathcal{E} \subseteq \mathcal{C} \supseteq \mathcal{M}) \to (\mathcal{E}' \subseteq \mathcal{C}' \supseteq \mathcal{M}')$ is a functor $F : \mathcal{C} \to \mathcal{C}'$ satisfying $F(\mathcal{E}) \subseteq \mathcal{E}'$ and $F(\mathcal{M}) \subseteq \mathcal{M}'$.

Example

Given categories A, B, consider $A \times B$ and denote:

$$\mathcal{E} := \{ (f, 1_b) \mid f \in \text{mor } \mathcal{A}, b \in \mathcal{B} \},$$
 $\mathcal{M} := \{ (1_a, g) \mid g \in \text{mor } \mathcal{B}, a \in \mathcal{A} \},$

Every morphism $(f,g) \in \mathcal{A} \times \mathcal{B}$ admits a unique $(\mathcal{E},\mathcal{M})$ -factorization:

$$(f,g) = (1,g) \circ (f,1).$$

Example

Given categories A, B, consider $A \times B$ and denote:

$$\mathcal{E} := \{ (f, 1_b) \mid f \in \text{mor } \mathcal{A}, b \in \mathcal{B} \},$$
 $\mathcal{M} := \{ (1_a, g) \mid g \in \text{mor } \mathcal{B}, a \in \mathcal{A} \},$

Every morphism $(f,g) \in \mathcal{A} \times \mathcal{B}$ admits a unique $(\mathcal{E},\mathcal{M})$ -factorization:

$$(f,g) = (1,g) \circ (f,1).$$

Codomain-discrete double categories

Definition

A double category *X* will be called *codomain-discrete* if every top-right corner can be uniquely filled into a square:

Remark

This amounts to requiring that the codomain functor $d_0: X_1 \to X_0$ is a discrete optibration.

Codomain-discrete double categories

Definition

A double category *X* will be called *codomain-discrete* if every top-right corner can be uniquely filled into a square:

Remark

This amounts to requiring that the codomain functor $d_0: X_1 \to X_0$ is a discrete optibration.

Example

If T is a very nice 2-monad on Cat, for any T-algebra (A, a), its resolution:

$$\begin{array}{ccc} & & & & & \\ & & & & \\ T^2A & \longleftarrow & Ti_A & \longleftarrow & TA \\ & & & & \\ & & & & Ta & \longrightarrow \end{array}$$

Is a double category and its transpose is codomain-discrete.

Construction

Let X be codomain-discrete. By the *category of corners* associated to X we mean a category Cnr(X) such that:

- objects are the objects of *X*,
- a morphism $a \rightarrow b$ is a tuple (u, g) of a vertical and a horizonta morphism in X (below left):

Construction

Let X be codomain-discrete. By the *category of corners* associated to X we mean a category Cnr(X) such that:

- objects are the objects of X,
- a morphism $a \rightarrow b$ is a tuple (u, g) of a vertical and a horizonta morphism in X (below left):

$$\begin{bmatrix} a & & & a \\ u \downarrow & & & \\ a' \xrightarrow{a} b & & a = a \end{bmatrix}$$

Construction

Let X be codomain-discrete. By the *category of corners* associated to X we mean a category Cnr(X) such that:

- objects are the objects of *X*,
- a morphism $a \rightarrow b$ is a tuple (u, g) of a vertical and a horizonta morphism in X (below left):

$$\begin{bmatrix} a & & & a \\ u \downarrow & & & \parallel \\ a' \xrightarrow{a} b & & a = a \end{bmatrix}$$

Construction

Let X be codomain-discrete. By the *category of corners* associated to X we mean a category Cnr(X) such that:

- objects are the objects of *X*,
- a morphism a → b is a tuple (u, g) of a vertical and a horizontal morphism in X (below left):

Construction

Let X be codomain-discrete. By the *category of corners* associated to X we mean a category Cnr(X) such that:

- objects are the objects of X,
- a morphism a → b is a tuple (u, g) of a vertical and a horizontal morphism in X (below left):

The composite of $(u,g): a \to b$ and $(v,h): b \to c$ is defined using the unique filler square, in this case it is the corner $(v' \circ u, h \circ g'): a \to c$:

The category of corners Cnr(X) has two canonical wide subcategories consisting of "vertical" and "horizontal" corners:

$$\mathcal{E}_X := \{(u,1) \mid u \in \mathsf{vmor}\ X\} \qquad \mathcal{M}_X := \{(1,g) \mid g \in \mathsf{hmor}\ X\}.$$

Lemma

Let X be codomain-discrete. Then $(\mathcal{E}_X, \mathcal{M}_X)$ is a strict factorization system on the category Cnr(X).

Proof

Every corner (u, g) factors uniquely as $(1, g) \circ (u, 1)$:

The category of corners Cnr(X) has two canonical wide subcategories consisting of "vertical" and "horizontal" corners:

$$\mathcal{E}_X := \{(u,1) \mid u \in \mathsf{vmor}\ X\} \qquad \mathcal{M}_X := \{(1,g) \mid g \in \mathsf{hmor}\ X\}.$$

Lemma

Let X be codomain-discrete. Then $(\mathcal{E}_X, \mathcal{M}_X)$ is a strict factorization system on the category Cnr(X).

Proof

Every corner (u, g) factors uniquely as $(1, g) \circ (u, 1)$:

The category of corners Cnr(X) has two canonical wide subcategories consisting of "vertical" and "horizontal" corners:

$$\mathcal{E}_X := \{(u,1) \mid u \in \mathsf{vmor}\ X\} \qquad \mathcal{M}_X := \{(1,g) \mid g \in \mathsf{hmor}\ X\}.$$

Lemma

Let X be codomain-discrete. Then $(\mathcal{E}_X, \mathcal{M}_X)$ is a strict factorization system on the category Cnr(X).

Proof

Every corner (u, g) factors uniquely as $(1, g) \circ (u, 1)$:

Construction

- The objects are the objects of C,
- vertical morphisms are those of \mathcal{E} ,
- horizontal morphisms are those of \mathcal{M} ,
- the squares are commutative squares in C.

Construction

- The objects are the objects of C,
- vertical morphisms are those of \mathcal{E} ,
- horizontal morphisms are those of ${\mathcal M}$
- the squares are commutative squares in C.

Construction

- The objects are the objects of C,
- vertical morphisms are those of \mathcal{E} ,
- horizontal morphisms are those of ${\mathcal M}$
- the squares are commutative squares in C.

Construction

- The objects are the objects of C,
- vertical morphisms are those of \mathcal{E} ,
- horizontal morphisms are those of ${\mathcal M}$
- the squares are commutative squares in C.

Construction

- The objects are the objects of C,
- vertical morphisms are those of \mathcal{E} ,
- horizontal morphisms are those of \mathcal{M} ,
- the squares are commutative squares in C.

Construction

- The objects are the objects of C,
- vertical morphisms are those of \mathcal{E} ,
- horizontal morphisms are those of M,
- the squares are commutative squares in C.

SFS' \implies c.d. double categories (2/2)

Lemma

Let $(\mathcal{E}, \mathcal{M})$ be a strict factorization system on a category \mathcal{C} . Then $\mathcal{D}_{\mathcal{E},\mathcal{M}}$ is codomain-discrete.

Proof

The unique filler square is given by the unique $(\mathcal{E}, \mathcal{M})$ -factorization of the morphism $m \circ e$ in \mathcal{C} :

Lemma

Let $(\mathcal{E}, \mathcal{M})$ be a strict factorization system on a category \mathcal{C} . Then $\mathcal{D}_{\mathcal{E},\mathcal{M}}$ is codomain-discrete.

Proof

The unique filler square is given by the unique $(\mathcal{E}, \mathcal{M})$ -factorization of the morphism $m \circ e$ in \mathcal{C} :

SFS' « cod. discr. double categories

Theorem

The assignments:

$$(\mathcal{E}, \mathcal{M}) \mapsto D_{\mathcal{E}, \mathcal{M}},$$

 $X \mapsto (\mathcal{E}_X, \mathcal{M}_X),$

Are equivalence inverse to each other and thus induce an equivalence between strict factorization systems and codomain-discrete double categories.

Orthogonal factorization systems (certain) double categories

OFS ← (certain) double categories

- bicartesian squares,
- 2 invariance,
- the notion of a "joint monicity" of a pair of a vertical and a horizontal morphism in a double category.

OFS <---> (certain) double categories

- 1 bicartesian squares,
- 2 invariance
- the notion of a "joint monicity" of a pair of a vertical and a horizontal morphism in a double category.

OFS <---> (certain) double categories

- 1 bicartesian squares,
- invariance,
- the notion of a "joint monicity" of a pair of a vertical and a horizontal morphism in a double category.

OFS <---> (certain) double categories

- 1 bicartesian squares,
- invariance,
- 3 the notion of a "joint monicity" of a pair of a vertical and a horizontal morphism in a double category.

Orthogonal factorization systems

Definition

An *orthogonal factorization system* $(\mathcal{E},\mathcal{M})$ on a category \mathcal{C} consists of two wide sub-categories $\mathcal{E},\mathcal{M}\subseteq\mathcal{C}$ satisfying:

• For every morphism $f \in \mathcal{C}$ there exist $e \in \mathcal{E}$, $m \in \mathcal{M}$ such that $f = m \circ e$, and if f = m'e' is a second factorization with $e' \in \mathcal{E}$, $m' \in \mathcal{M}$, there exists a unique morphism θ so that this commutes:

• we have that $\mathcal{E} \cap \mathcal{M} = \{\text{isomorphisms in } \mathcal{C}\}.$

Bicrossed double categories (1/2)

Definition

A square λ in a double category X will be called *opcartesian* if it's an opcartesian morphism with respect to the codomain functor $d_0: X_1 \to X_0$. In elementary terms:

Bicrossed double categories (1/2)

Definition

A square λ in a double category X will be called *opcartesian* if it's an opcartesian morphism with respect to the codomain functor $d_0: X_1 \to X_0$. In elementary terms:

Bicrossed double categories (2/2)

Given a double category X, denote $X^* := ((X^v)^h)^T$.

Definition - Ingredient 1

A square λ in a double category X will be called *bicartesian* if it is operatesian in both X and X^* .

Definition

A double category *X* will be called *bicrossed* it every top-right corner can be filled to a (not necessarily unique) bicartesian square. Moreover, bicartesian squares are closed under horizontal and vertical compositions and identities.

Bicrossed double categories (2/2)

Given a double category X, denote $X^* := ((X^v)^h)^T$.

Definition - Ingredient 1

A square λ in a double category X will be called *bicartesian* if it is operatesian in both X and X^* .

Definition

A double category *X* will be called *bicrossed* it every top-right corner can be filled to a (not necessarily unique) bicartesian square. Moreover, bicartesian squares are closed under horizontal and vertical compositions and identities.

Bicrossed double categories (2/2)

Given a double category X, denote $X^* := ((X^v)^h)^T$.

Definition - Ingredient 1

A square λ in a double category X will be called *bicartesian* if it is opcartesian in both X and X^* .

Definition

A double category *X* will be called *bicrossed* it every top-right corner can be filled to a (not necessarily unique) bicartesian square. Moreover, bicartesian squares are closed under horizontal and vertical compositions and identities.

Bicrossed double categories - Examples

Example

 $\mathcal C$ a category with pullbacks, $\operatorname{Sq}(\mathcal C)^{\nu}$, $\operatorname{PbSq}(\mathcal C)^{\nu}$, MonoPbSq $(\mathcal C)^{\nu}$. In each of these the filler is given by a pullback square:

Example

 $\mathsf{BOFib}^{\mathsf{v}}$. This is because both bijections on objects and discrete opfibrations are stable under pullbacks.

Bicrossed double categories - Examples

Example

 \mathcal{C} a category with pullbacks, $\operatorname{Sq}(\mathcal{C})^{\nu}$, $\operatorname{PbSq}(\mathcal{C})^{\nu}$, MonoPbSq $(\mathcal{C})^{\nu}$. In each of these the filler is given by a pullback square:

Example

 $BOFib^{\nu}$. This is because both bijections on objects and discrete opfibrations are stable under pullbacks.

Construction

- objects are the objects of *X*,
- a morphism $a \rightarrow b$ is an equivalence class [e, m] of tuples of a vertical morphism followed by a horizontal one in X,
- the identity on an object a is the equivalence class $[1_a, 1_a]$ (above right).

Construction

- objects are the objects of X,
- a morphism a → b is an equivalence class [e, m] of tuples of a vertical morphism followed by a horizontal one in X,
- the identity on an object a is the equivalence class $[1_a, 1_a]$ (above right).

Construction

- objects are the objects of X,
- a morphism $a \rightarrow b$ is an equivalence class [e, m] of tuples of a vertical morphism followed by a horizontal one in X,
- the identity on an object a is the equivalence class $[1_a, 1_a]$ (above right).

Construction

- objects are the objects of X,
- a morphism $a \rightarrow b$ is an equivalence class [e, m] of tuples of a vertical morphism followed by a horizontal one in X,
- the identity on an object a is the equivalence class $[1_a, 1_a]$ (above right).

We consider two corners (e, m), (e', m') with the same domain and codomain equivalent if and only if there exists a square β like this:

The composite of $[u,g]: a \to b$ and $[v,h]: b \to c$ is defined using a **choice** of **some** bicartesian filler square, in this case it is the equivalence class $[v' \circ u, h \circ g']: a \to c$:

Example

Consider $PbSq(\mathcal{C})^{\nu}$ for \mathcal{C} with pullbacks. $Cnr(PbSq(\mathcal{C})^{\nu})$ has objects the objects of \mathcal{C} , while a morphism is an equivalence class of corners:

$$a$$
 $u \uparrow$
 $a' \longrightarrow b$

In fact, $Cnr(PbSq(\mathcal{C})^{\nu}) \cong Span(\mathcal{C})$.

Similarly

$$\mathsf{Cnr}(\mathsf{MonoPbSq}(\mathcal{C})^{\nu}) \cong \mathsf{Par}(\mathcal{C})$$
 $\mathsf{Cnr}(\mathsf{BOFib}^{\nu}) \cong \mathsf{Cof}.$

Example

Consider $PbSq(\mathcal{C})^{\nu}$ for \mathcal{C} with pullbacks. $Cnr(PbSq(\mathcal{C})^{\nu})$ has objects the objects of \mathcal{C} , while a morphism is an equivalence class of corners:

$$a$$
 $u\uparrow$
 $a' \xrightarrow{g} b$

In fact, $Cnr(PbSq(\mathcal{C})^{\nu}) \cong Span(\mathcal{C})$.

Similarly

$$Cnr(MonoPbSq(C)^{\nu}) \cong Par(C)$$

 $Cnr(BOFib^{\nu}) \cong Cof.$

Example

Consider $PbSq(\mathcal{C})^{\nu}$ for \mathcal{C} with pullbacks. $Cnr(PbSq(\mathcal{C})^{\nu})$ has objects the objects of \mathcal{C} , while a morphism is an equivalence class of corners:

$$a$$
 $u\uparrow$
 $a' \xrightarrow{g} b$

In fact, $Cnr(PbSq(\mathcal{C})^{\nu}) \cong Span(\mathcal{C})$.

Similarly,

$$\mathsf{Cnr}(\mathsf{MonoPbSq}(\mathcal{C})^{\nu}) \cong \mathsf{Par}(\mathcal{C})$$

 $\mathsf{Cnr}(\mathsf{BOFib}^{\nu}) \cong \mathsf{Cof}.$

Example

Consider $PbSq(\mathcal{C})^{\nu}$ for \mathcal{C} with pullbacks. $Cnr(PbSq(\mathcal{C})^{\nu})$ has objects the objects of \mathcal{C} , while a morphism is an equivalence class of corners:

$$egin{array}{c} a \ u \ \uparrow \ a' \ \longrightarrow g \ b \end{array}$$

In fact, $Cnr(PbSq(\mathcal{C})^{\nu}) \cong Span(\mathcal{C})$.

Similarly,

$$Cnr(MonoPbSq(\mathcal{C})^{\nu}) \cong Par(\mathcal{C}),$$

 $Cnr(BOFib^{\nu}) \cong Cof.$

Example

Consider $PbSq(\mathcal{C})^{\nu}$ for \mathcal{C} with pullbacks. $Cnr(PbSq(\mathcal{C})^{\nu})$ has objects the objects of \mathcal{C} , while a morphism is an equivalence class of corners:

$$egin{aligned} a \ u \ \uparrow \ a' & \longrightarrow \ b \end{aligned}$$

In fact, $Cnr(PbSq(\mathcal{C})^{\nu}) \cong Span(\mathcal{C})$.

Similarly,

$$\begin{split} \mathsf{Cnr}(\mathsf{MonoPbSq}(\mathcal{C})^{\nu}) &\cong \mathsf{Par}(\mathcal{C}), \\ \mathsf{Cnr}(\mathsf{BOFib}^{\nu}) &\cong \mathsf{Cof}. \end{split}$$

Ingredient 2

Definition - Ingredient 2

A double category X is *invariant* if the following boundaries admit a unique filler:

Example

All of our previous guests: Sq(C), PbSq(C), MonoPbSq(C), BOFib.

Ingredient 2

Definition - Ingredient 2

A double category X is *invariant* if the following boundaries admit a unique filler:

Example

All of our previous guests: Sq(C), PbSq(C), MonoPbSq(C), BOFib.

Ingredient 3

Definition - ingredient 3

A top-left corner (π_1, π_2) in a double category X is said to be *jointly monic* if, given squares κ_1 , κ_2 pictured below:

$$egin{array}{ccc} a' & \stackrel{\pi_2}{\longrightarrow} & b \ & & \\ \pi_1 & & & \\ & a & & & \end{array}$$

$$egin{array}{cccc} egin{array}{cccc} egin{array}{cccc} egin{array}{ccccc} & & & & & & a' \\ \theta \downarrow & & & & & & & & & \\ a' & & & & & & & a' \end{array}$$

$$egin{array}{cccc} egin{array}{cccc} egin{array}{cccc} egin{array}{ccccc} egin{array}{ccccc} eta' & & & & \\ eta' & & & & \\ egin{array}{ccccc} eta' & & \\ egin{array}{cccc} eta' & & \\ egin{array}{cccc} eta' & & \\ egin{array}{ccccc} eta' & & \\ egin{array}{cccc} eta' & & \\ egin{array}{ccccc} eta' & & \\ egin{array}{cccc} eta' & & \\ egin{array}{ccccc} eta' & & \\ egin{array}{cccc} eta' & & \\ egin{array}{cccc} eta' & & \\ egin{array}{cccc} eta' & & \\ egin{array}{ccccc} eta' & & \\ egin{array}{cccc} \eta' & & \\ egin{array}{cccc} \eta' & & \\ \end{array} \end{array}$$

We have the following implication:

$$(\pi_1\theta = \pi_1\theta' \wedge \pi_2\psi = \pi_2\psi') \Rightarrow (\theta = \theta', \psi = \psi').$$

Ingredient 3 - Example

Example

In Sq(\mathcal{C}) a pair (π_1, π_2) of pullback projections is jointly monic, as this condition reduces to:

$$(\pi_1\theta = \pi_1\theta' \wedge \pi_2\theta = \pi_2\theta') \Rightarrow (\theta = \theta').$$

Example

In MonoPbSq(\mathcal{C}) any pair (π_1,π_2) is jointly monic because π_1 is a monomorphism.

Example

In BOFib any pair is jointly monic. It can be proven.

Ingredient 3 - Example

Example

In Sq(\mathcal{C}) a pair (π_1, π_2) of pullback projections is jointly monic, as this condition reduces to:

$$(\pi_1\theta = \pi_1\theta' \wedge \pi_2\theta = \pi_2\theta') \Rightarrow (\theta = \theta').$$

Example

In MonoPbSq(\mathcal{C}) any pair (π_1,π_2) is jointly monic because π_1 is a monomorphism.

Example

In BOFib any pair is jointly monic. It can be proven.

Ingredient 3 - Example

Example

In Sq(\mathcal{C}) a pair (π_1, π_2) of pullback projections is jointly monic, as this condition reduces to:

$$(\pi_1 \theta = \pi_1 \theta' \wedge \pi_2 \theta = \pi_2 \theta') \Rightarrow (\theta = \theta').$$

Example

In MonoPbSq(\mathcal{C}) any pair (π_1,π_2) is jointly monic because π_1 is a monomorphism.

Example

In BOFib any pair is jointly monic. It can be proven.

Fact. double categories ✓→ OFS'

Definition

A double category *X* is said to be a *factorization double category* if:

- every square is bicartesian and every top-right corner can be filled to a square,
- X is invariant,
- every top-left corner in X^{v} is jointly monic.

Let X be a factorization double category. Define the classes of "vertical" and "horizontal" corners \mathcal{E}_X , \mathcal{M}_X on the category $\mathsf{Cnr}(X)$ as before. We have:

Proposition

Let X be a factorization double category. Then $(\mathcal{E}_X, \mathcal{M}_X)$ is an orthogonal factorization system on the category $\mathsf{Cnr}(X)$.

Fact. double categories ✓ OFS'

Definition

A double category *X* is said to be a *factorization double category* if:

- every square is bicartesian and every top-right corner can be filled to a square,
- X is invariant,
- every top-left corner in X^{v} is jointly monic.

Let X be a factorization double category. Define the classes of "vertical" and "horizontal" corners \mathcal{E}_X , \mathcal{M}_X on the category $\mathsf{Cnr}(X)$ as before. We have:

Proposition

Let X be a factorization double category. Then $(\mathcal{E}_X, \mathcal{M}_X)$ is an orthogonal factorization system on the category $\mathsf{Cnr}(X)$.

Fact. double categories ✓ OFS'

Definition

A double category *X* is said to be a *factorization double category* if:

- every square is bicartesian and every top-right corner can be filled to a square,
- X is invariant,
- every top-left corner in X^{v} is jointly monic.

Let X be a factorization double category. Define the classes of "vertical" and "horizontal" corners \mathcal{E}_X , \mathcal{M}_X on the category $\mathsf{Cnr}(X)$ as before. We have:

Proposition

Let X be a factorization double category. Then $(\mathcal{E}_X, \mathcal{M}_X)$ is an orthogonal factorization system on the category $\mathsf{Cnr}(X)$.

Fact. double categories ← OFS'

Proposition

Let $(\mathcal{E}, \mathcal{M})$ be an orthogonal factorization system on a category \mathcal{C} . Then $\mathcal{D}_{\mathcal{E},\mathcal{M}}$ is a factorization double category.

Theorem

The assignments are again equivalence inverse to each other and induce an equivalence:

Fact. double categories ← OFS'

Proposition

Let $(\mathcal{E}, \mathcal{M})$ be an orthogonal factorization system on a category \mathcal{C} . Then $D_{\mathcal{E},\mathcal{M}}$ is a factorization double category.

Theorem

The assignments are again equivalence inverse to each other and induce an equivalence:

Examples (1/2)

Example

 $\mathcal C$ a category with pullbacks, MonoPbSq($\mathcal C$) $^{\nu}$ is a factorization double category. Thus Cnr(MonoPbSq($\mathcal C$) $^{\nu}$) = Par($\mathcal C$) admits an orthogonal factorization system given by "restricted identity maps" and *total maps*:

Examples (2/2)

Example

 $\mathsf{BOFib}^{\mathsf{v}}$ is a factorization double category and $\mathsf{Cnr}(\mathsf{BOFib}^{\mathsf{v}}) = \mathsf{Cof}$ comes equipped with an orthogonal factorization system given by (the opposites of) bijections on objects followed by discrete opfibrations.

Example

If $P: \mathcal{E} \to \mathcal{B}$ is a fibration, there is a double category X_P such that:

- objects are the objects of \mathcal{E} ,
- vertical morphisms are *P*-vertical morphisms,
- horizontal morphisms are P-cartesian morphisms,
- squares are commutative squares.

 X_P is a factorization double category and $Cnr(X_P) = \mathcal{E}$ admits an orthogonal factorization system given by P-vertical morphisms followed by P-cartesian morphisms.

Examples (2/2)

Example

 $\mathsf{BOFib}^{\mathsf{v}}$ is a factorization double category and $\mathsf{Cnr}(\mathsf{BOFib}^{\mathsf{v}}) = \mathsf{Cof}$ comes equipped with an orthogonal factorization system given by (the opposites of) bijections on objects followed by discrete opfibrations.

Example

If $P: \mathcal{E} \to \mathcal{B}$ is a fibration, there is a double category X_P such that:

- objects are the objects of \mathcal{E} ,
- vertical morphisms are *P*-vertical morphisms,
- horizontal morphisms are P-cartesian morphisms,
- squares are commutative squares.

 X_P is a factorization double category and $Cnr(X_P) = \mathcal{E}$ admits an orthogonal factorization system given by P-vertical morphisms followed by P-cartesian morphisms.

References

Mark Weber (2015)

Internal algebra classifiers as codescent objects of crossed internal categories

Theory and Applications of Categories 30.50 (2015): 1713-1792.

Miloslav Štěpán (2023)

Factorization systems and double categories *arXiv* preprint arXiv:2305.06714 12(3)

Thank you.